版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市乾县第二中学2026届高一上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.使不等式成立的充分不必要条件是()A. B.C. D.2.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.3.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是A. B.C. D.4.已知为奇函数,当时,,则()A.3 B.C.1 D.5.已知向量,,,若,,则()A. B.C. D.6.下列四组函数中,定义域相同的一组是()A.和 B.和C.和 D.和7.已知点,,,且满足,若点在轴上,则等于A. B.C. D.8.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.9.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.10.sin()=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数图像过点,则此函数的解析式是________.12.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.13.已知则_______.14.已知,则的值为______.15.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.16.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数的最小正周期;(2)求函数的对称中心;(3)当时,求的最大值和最小值.18.已知函数在闭区间()上的最小值为(1)求的函数表达式;(2)画出的简图,并写出的最小值19.已知函数是定义在上的偶函数,且当时,,函数在轴左侧的图象如图所示(1)求函数的解析式;(2)若关于的方程有个不相等的实数根,求实数的取值范围20.设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)是否存在满足:在上值域为.若存在,求的取值范围.21.已知方程(1)若方程表示一条直线,求实数的取值范围;(2)若方程表示的直线的斜率不存在,求实数的值,并求出此时的直线方程;(3)若方程表示的直线在轴上的截距为,求实数的值;(4)若方程表示的直线的倾斜角是45°,求实数的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A2、B【解析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.3、D【解析】化简函数,根据表示不超过的最大整数,可得结果.【详解】函数,当时,;当时,;当时,,函数的值域是,故选D.【点睛】本题考查指数的运算、函数的值域以及新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.4、B【解析】根据奇偶性和解析式可得答案.【详解】由题可知,故选:B5、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.6、C【解析】根据根式、分式、对数的性质求各函数的定义域即可.【详解】A:定义域为,定义域为,不合题设;B:定义域为,定义域为,不合题设;C:、定义域均为,符合题设;D:定义域为,定义域为,不合题设;故选:C.7、C【解析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C8、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.9、A【解析】求出函数的周期,函数的奇偶性,判断求解即可【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A考点:三角函数的性质.10、A【解析】直接利用诱导公式计算得到答案.【详解】故选:【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.【详解】设幂函数的解析式为,由于函数图象过点,故有,解得,所以该函数的解析式是,故答案为:.【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.12、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.13、【解析】因为,所以14、【解析】用诱导公式计算【详解】,,故答案为:15、【解析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.16、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期(2),(3),【解析】(1)利用两角和公式和二倍角公式对函数解析式化简整理,利用周期公式求得函数的最小正周期,利用三角函数图象和性质求得其对称轴方程(2)根据正弦函数的性质计算可得;(3)利用的范围求得的范围,再根据正弦函数的性质求出函数在区间上最大值和最小值【小问1详解】解:即所以的最小正周期为,【小问2详解】解:令,,解得,,所以函数的对称中心为,【小问3详解】解:当时,,所以则当,即时,;当,即时,18、(1)(2)见解析【解析】【试题分析】(1)由于函数的对称轴为且开口向上,所以按三类,讨论函数的最小值.(2)由(1)将分段函数的图象画出,由图象可判断出函数的最小值.【试题解析】(1)依题意知,函数是开口向上的抛物线,∴函数有最小值,且当时,下面分情况讨论函数在闭区间()上的取值情况:①当闭区间,即时,在处取到最小值,此时;②当,即时,在处取到最小值,此时;③当闭区间,即时,在处取到最小值,此时综上,的函数表达式为(2)由(1)可知,为分段函数,作出其图象如图:由图像可知【点睛】本题主要考查二次函数在动区间上的最值问题,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于二次函数的解析式是知道的,即开口方向和对称轴都知道,而题目给定定义域是含有参数的动区间,故需要对区间和对称轴对比进行分类讨论函数的最值.19、(1)(2)【解析】(1)利用可求时的解析式,当时,利用奇偶性可求得时的的解析式,由此可得结果;(2)作出图象,将问题转化为与有个交点,数形结合可得结果.【小问1详解】由图象知:,即,解得:,当时,;当时,,,为上的偶函数,当时,;综上所述:;【小问2详解】为偶函数,图象关于轴对称,可得图象如下图所示,有个不相等的实数根,等价于与有个不同的交点,由图象可知:,即实数的取值范围为.20、(1);(2)在上单调递增,在上单调递减;(3)不存在.【解析】(1)直接求出,从而通过解不等式可求得的取值范围;(2)根据二次函数的单调性即可得出分段函数的单调性;(3)首先判断出,从而得到,即在上单调递增;然后把问题转化为在上有两个不等实数根的问题,从而判断出不存在的值.【详解】(1)∵,∴,即,所以,所以的取值范围为.(2)易知,对于,其对称轴为,开口向上,所以在上单调递增;对于,其对称轴为,开口向上,所以在上单调递减,综上知,在上单调递增,在上单调递减;(3)由(2)得,又在上的值域为,所以,又∵在上单调递增,∴,即在上有两个不等实数根,即在上有两个不等实数根,即在上有两个不等实数根,令,则其对称轴为,所以在上不可能存在两个不等的实根,∴不存在满足在上的值域为.21、(1);(2);;(3);(4).【解析】(1)先令,的系数同时为零时得到,即得时方程表示一条直线;(2)由(1)知时的系数为零,方程表示的直线的斜率不存在,即得结果;(3)由(1)知的系数同为零时,直线在轴上的截距存在,解得截距构建关系,即解得参数m;(4)由(1)知,的系数为零时,直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学健康管理(健康管理基础)试题及答案
- 宠物美容服务合同2025年服务责任协议
- 2025年高职(学前教育)幼儿游戏设计试题及答案
- 2025年高职(人力资源管理)职业发展规划阶段测试题及答案
- 2025-2026年八年级生物(高频考点)上学期试题及答案
- 2025-2026年高一地理(专题集训)上学期期末试题及答案
- 2025年大学旅游管理(旅游市场营销)试题及答案
- 2026年专业能力(综合应用)考题及答案
- 2025年中职酒店管理(前厅服务管理)试题及答案
- 2025黑龙江哈尔滨启航劳务派遣有限公司派遣到哈尔滨工业大学化工与化学学院招聘笔试考试参考题库及答案解析
- 甘肃庆阳东数西算产业园区绿电聚合试点项目-330千伏升压站及330千伏送出工程环境影响评价报告书
- 电商行业电商平台大数据分析方案
- 《生理学》 课件 -第三章 血液
- 企业介绍设计框架
- 台安N2变频器说明书
- 2025国家开放大学《公共部门人力资源管理》期末机考题库
- JG/T 545-2018卫生间隔断构件
- 物业管理服务三方协议书全
- 沥青摊铺培训课件
- 项目群管理中期汇报
- 电梯作业人员理论考试练习题库
评论
0/150
提交评论