版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨第三中学2026届高二数学第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.2.不等式解集为()A. B.C. D.3.已知函数,则等于()A.0 B.2C. D.4.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假5.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到6.抛物线的焦点坐标是A. B.C. D.7.函数的定义域为,,对任意,,则的解集为()A. B.C. D.8.在空间直角坐标系中,点关于平面的对称点的坐标是()A. B.C. D.9.已知函数,则的单调递增区间为().A. B.C. D.10.已知数列是等差数列,为数列的前项和,,,则()A.54 B.71C.81 D.8011.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.12.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.平面内n条直线两两相交,且任意三条直线不过同一点,将其交点个数记为,若规定,则,,_________,_________,(用含n的式子表示)14.二项式的展开式中,项的系数为__________.15.已知椭圆的左、右焦点为,过作x轴垂线交椭圆于点P,若为等腰直角三角形,则椭圆的离心率是___________.16.设x,y满足约束条件则的最大值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程18.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.19.(12分)已知圆的半径为,圆心在直线上,点在圆上.(1)求圆的标准方程;(2)若原点在圆内,求过点且与圆相切的直线方程.20.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围21.(12分)已知焦点为F的抛物线上一点到F的距离是4(1)求抛物线C的方程(2)若不过原点O的直线l与抛物线C交于A,B两点(A,B位于x轴两侧),C的准线与x轴交于点E,直线与分别交于点M,N,若,证明:直线l过定点22.(10分)已知圆.(1)若不过原点的直线与圆相切,且直线在两坐标轴上的截距相等,求直线的方程;(2)求与圆和直线都相切的最小圆的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.2、C【解析】化简一元二次不等式的标准形式并求出解集即可.【详解】不等式整理得,解得或,则不等式解集为.故选:.3、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.4、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.5、B【解析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B6、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.7、B【解析】构造函数,利用导数判断出函数在上的单调性,将不等式转化为,利用函数的单调性即可求解.【详解】依题意可设,所以.所以函数在上单调递增,又因为.所以要使,即,只需要,故选B.【点睛】本题考查利用函数的单调性解不等式,解题的关键就是利用导数不等式的结构构造新函数来解,考查分析问题和解决问题的能力,属于中等题.8、C【解析】根据空间里面点关于面对称的性质即可求解.【详解】在空间直角坐标系中,点关于平面的对称点的坐标是.故选:C.9、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D10、C【解析】利用等差数列的前n项和公式求解.【详解】∵是等差数列,,∴,得,∴.故选:C.11、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.12、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.6;②..【解析】利用第条直线与前条直线相交有个交点得出与的关系后可得结论【详解】第4条直线与前三条直线有3个交点,因此,同理,由此得到第条直线与前条直线相交有个交点,所以,即所以故答案为:6;14、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8015、##【解析】以为等腰直角三角形列方程组可得之间的关系式,进而求得椭圆的离心率.【详解】椭圆的左、右焦点为,点P由为等腰直角三角形可知,,即可化为,故或(舍)故答案为:16、1【解析】先作出可行域,由,得,作出直线,向下平移过点时,取得最大值,求出点坐标代入目标函数中可得答案【详解】作出可行域如图(图中阴影部分),由,得,作出直线,向下平移过点时,取得最大值,由,得,即,所以的最大值为,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据短轴长求出b,根据M在C上求出a;(2)根据题意设直线l为,与椭圆方程联立得根与系数关系,根据=即可求出m的值.【小问1详解】∵短轴长为2,∴,∴,又∵点在C上,∴,∴,∴椭圆C的标准方程为;【小问2详解】由(1)知,∵当直线l斜率为0时,不符合题意,∴设直线l的方程为:,联立,消x得:,∵,∴设,,则,∵,∴,∴,即,解得,∴直线l的方程为:或.18、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;【小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设.则,,.从而,设平面BCE的法向量为,则令,得平面ABC的一个法向量为设二面角为,由图可知为锐角,则19、(1)或(2)或【解析】(1)先设出圆的标准方程,利用点在圆上和圆心在直线上得到圆心坐标的方程组,进而求出圆的标准方程;(2)先利用原点在圆内求出圆的方程,设出切线方程,利用圆心到切线的距离等于半径进行求解.【小问1详解】解:设圆的标准方程为,由已知得,解得或,故圆的方程为或.【小问2详解】解:因为,,且原点在圆内,故圆的方程为,则圆心为,半径为,设切线为,即,则,解得或,故切线为或,即或即为所求.20、(1)(2)【解析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为21、(1);(2)证明过程见解析.【解析】(1)利用抛物线的定义进行求解即可;(2)设出直线l的方程,与抛物线方程联立,根据一元二次方程的根与系数关系进行求解证明即可.【小问1详解】该抛物线的准线方程为,因为点到F的距离是4,所以有,所以抛物线C的方程为:;【小问2详解】该抛物线的准线方程为,设直线l的方程为:,与抛物线方程联立,得,不妨设,因此,直线的斜率为:,所以方程为:,当时,,即,同理,因为,所以有,而,所以有,所以直线l的方程为:,因此直线l恒过.【点睛】关键点睛:把直线l的方程为:,利用一元二次方程根与系数关系是解题的关键.22、(1)或;(2).【解析】(1)根据题意设出直线的方程,然后根据直线与圆相切,即可求出答案;(2)首先根据题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年质量员继续教育题库500道附完整答案【名校卷】
- 高频护士面试题及答案参考
- 京东集团调试工程师岗位面试题库含答案
- 2025年昆明市寻甸县卫生健康系统第二批招聘编外人员(40人)考试笔试备考试题及答案解析
- 2025“黑龙江人才周”肇州县人才引进10人备考题库附答案
- 2026年心理咨询师考试题库300道(培优)
- 数据分析师数据安全面试题及加密技术含答案
- 2026年注册土木工程师(水利水电)之专业基础知识考试题库200道(考点梳理)
- 2025河北雄安人才服务有限公司招聘2人笔试考试参考题库及答案解析
- 2025年郑州信息工程职业学院辅导员招聘备考题库附答案
- 全球重点区域算力竞争态势分析报告(2025年)-
- 2025北京热力热源分公司招聘10人参考笔试题库及答案解析
- 2025年湖南省法院系统招聘74名聘用制书记员笔试参考题库附答案
- 2025广西机电职业技术学院招聘教职人员控制数人员79人备考题库及答案解析(夺冠)
- 2026届高考政治一轮复习:必修2 经济与社会 必背主干知识点清单
- 大学生校园创新创业计划书
- 护士职业压力管理与情绪调节策略
- 贵州国企招聘:2025贵州凉都能源有限责任公司招聘10人备考题库及答案详解(必刷)
- 招标人主体责任履行指引
- 2025-2026学年北师大版五年级数学上册(全册)知识点梳理归纳
- 2021年广东省广州市英语中考试卷(含答案)
评论
0/150
提交评论