版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省随州市第一高级中学高二数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切2.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含3.直线的倾斜角的大小为A. B.C. D.4.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.5.在的展开式中,的系数为()A. B.5C. D.106.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.7.设函数,,,则()A. B.C. D.8.已知,若,则的取值范围为()A. B.C. D.9.在空间直角坐标系中,,,平面的一个法向量为,则平面与平面夹角的正弦值为()A. B.C. D.10.已知直线过点且与直线平行,则直线方程为()A. B.C. D.11.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.12.函数的单调递减区间为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人独立地破译一份密码,已知各人能破译的概率分别为,则密码被成功破译的概率_________14.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.15.如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.16.如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?18.(12分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.19.(12分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.20.(12分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.21.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面22.(10分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C2、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.3、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握4、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.5、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项6、B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B7、A【解析】根据导数得出在的单调性,进而由单调性得出大小关系.【详解】因为,所以在上单调递增.因为,所以,而,所以.因为,且,所以.即.故选:A8、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.9、A【解析】根据给定条件求出平面的法向量,再借助空间向量夹角公式即可计算作答.【详解】设平面的法向量为,则,令,得,令平面与平面夹角为,则,,所以平面与平面夹角的正弦值为.故选:A10、C【解析】由题意,直线的斜率为,利用点斜式即可得答案.【详解】解:因为直线与直线平行,所以直线的斜率为,又直线过点,所以直线的方程为,即,故选:C.11、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.12、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,由相互独立事件概率的乘法公式可得密码没有被破译的概率,进而由对立事件的概率性质分析可得答案【详解】解:根据题意,甲乙两人能成功破译的概率分别是,,则密码没有被破译,即甲乙都没有成功破译密码概率,故该密码被成功破译的概率故答案为:14、【解析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【点睛】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.15、【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,2,,,1,,,,设异面直线与所成角为,,异面直线与所成角为.故答案为:.16、【解析】由题意可知到第行结束一共有个数字,由此可知在第行;又由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行个数字从大到小排列,由此可知在到数第列,据此即可求出,进而求出结果.【详解】由图可知,第1行有1个数字,第2行有2个数字,第2行有3个数字,……第行有个数字,由此规律可知,到第行结束一共有个数字;又当时,,所以第行结束一共有个数字;当时,,所以在第行,故;由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行是偶数行,共个数字,从大到小排列,所以在倒数第列,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.18、(1),常数项为(2)5【解析】(1)求出二项式的通项公式,求出第3项和第4项的二项式系数,再利用已知条件列方程求出的值,从而可求出常数项,(2)设展开式中系数最大的项是第项,则,从而可求出结果【小问1详解】二项式展开式的通项公式为,因为第3项和第4项的二项式系数比为,所以,化简得,解得,所以,令,得,所以常数项为【小问2详解】设展开式中系数最大的项是第项,则,,解得,因为,所以,所以展开式中系数最大的项是第5项19、(1);(2)存在,.【解析】(1)设出圆心,根据圆心到直线距离等于半径列方程求出的值可得圆心坐标,进而可得圆的方程;(2)由题可设直线的方程为,与圆的方程联立,利用韦达定理及可得,即得.【小问1详解】由已知可设圆心,则,解得或(舍).所以圆.【小问2详解】由题可设直线的方程为,由,得到:显然成立,所以.①若轴平分,则,所以:,整理得:,将①代入整理得对任意的恒成立,则.∴存在点为时,使得轴平分.20、(1)证明见解析(2)答案不唯一,见解析【解析】(1)利用折叠前后的线段长度及勾股定理求证即可;(2)动点M满足时和,但时两种情况,利用线线平行或相交得到结论.【小问1详解】在折叠前的图中,如图:,E为上一点且,则,折叠后,所以,又,所以,所以为直角三角形.小问2详解】当动点M在线段上,满足,同样在线段上取,使得,则,当时,则,又且所以,且,所以四边形为平行四边形,所以,又平面,所以此时平面;当时,此时,但,所以四边形为梯形,所以与必然相交,所以与平面必然相交.综上,当动点M满足时,平面;当动点M满足,但时,与平面相交.21、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.22、(1)(2)存在,【解析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程与椭圆方程化简可得,设,,可得,,由此证明,再证明当直线的斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职(安全技术与管理)安全生产基础知识试题及答案
- 2026年中职第二学年(建筑装饰)装饰施工工艺阶段测试题及答案
- 2025年中职(会展服务与管理)会展现场管理测试题及答案
- 大学(电子信息工程)数字电子技术2026年综合测试题及答案
- 2025年高职(航海技术)船舶安全与防污染试题及答案
- 2025广东云浮市消防救援支队招聘政府专职消防员21人考试笔试备考试题及答案解析
- 2025年河南轻工职业学院招聘工作人员(硕士)46名考试笔试备考题库及答案解析
- 2025年标准员之专业管理实务考试题库及答案【名师系列】
- 2025安徽池州市东至县医疗保障局所属事业单位选调10人笔试考试参考题库及答案解析
- 2025辽宁抚顺市市场监督管理局所属事业单位面向社会招聘高层次和急需紧缺人才14人(第二批)笔试考试参考题库及答案解析
- 酒店行业的信息安全培训方法
- 塑料制品行业财务工作年度绩效报告
- 皮肤科护理中的振动按摩在皮肤病管理中的应用
- 20以内进位加法100题(精心整理6套-可打印A4)
- 肠内营养考评标准终
- 2023届高考专题复习:小说专题训练群体形象与个体形象(含答案)
- 项目全周期现金流管理培训
- 生物化学实验智慧树知到答案章节测试2023年浙江大学
- 等腰三角形复习课教案
- GB/T 39741.1-2021滑动轴承公差第1部分:配合
- GB/T 19228.3-2012不锈钢卡压式管件组件第3部分:O形橡胶密封圈
评论
0/150
提交评论