浙江省宁波市北仑区2026届高一上数学期末质量检测试题含解析_第1页
浙江省宁波市北仑区2026届高一上数学期末质量检测试题含解析_第2页
浙江省宁波市北仑区2026届高一上数学期末质量检测试题含解析_第3页
浙江省宁波市北仑区2026届高一上数学期末质量检测试题含解析_第4页
浙江省宁波市北仑区2026届高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市北仑区2026届高一上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则集合的元素个数为()A.0 B.1C.2 D.32.是上的奇函数,满足,当时,,则()A. B.C. D.3.已知函数则函数值域是()A. B.C. D.4.若函数的图象(部分)如图所示,则的解析式为()A. B.C. D.5.函数图像大致为()A. B.C. D.6.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值7.已知集合,,则集合A. B.C. D.8.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.49.已知幂函数的图象过点,则的值为()A. B.C. D.10.若,则()A.“”是“”的充分不必要条件 B.“”是“”的充要条件C.“”是“”的必要不充分条件 D.“”是“”的既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为_____________12.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________13.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.14.已知函数,则________.15.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由16.在空间直角坐标系中,点和之间的距离为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量=(3,2),=(-1,2),=(4,1)(1)若=m+n,求m,n的值;(2)若向量满足(-)(+),|-|=2,求的坐标.18.已知函数(1)求函数的最值及相应的的值;(2)若函数在上单调递增,求的取值范围19.2022年新冠肺炎仍在世界好多国家肆虐,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨.我市某小区为了防止疫情在小区出现,严防外来人员进入小区,切实保障居民正常生活,设置“特殊值班岗”.现有包含甲、乙在内的4名志愿者参与该工作,每人安排一天,每4天一轮.在一轮的“特殊值班岗”安排中,求:(1)甲、乙两人相邻值班的概率;(2)甲或乙被安排在前2天值班的概率20.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中(1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值21.若函数是奇函数(),且,.(1)求实数,,的值;(2)判断函数在上的单调性,并利用函数单调性的定义证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.2、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.3、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B4、A【解析】根据正弦型函数最小正周期公式,结合代入法进行求解即可.【详解】设函数的最小正周期为,因为,所以由图象可知:,即,又因为函数过,所以有,因为,所以令,得,即,故选:A5、B【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B6、C【解析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【点睛】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.7、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.8、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D9、A【解析】待定系数求得幂函数解析式,再求对数运算的结果即可.【详解】设幂函数为,由题意得,,∴故选:A【点睛】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题.10、C【解析】根据推出关系依次判断各个选项即可得到结果.【详解】对于A,,,则“”是“”的必要不充分条件,A错误;对于B,,,则“”是“”的充分不必要条件,B错误;对于C,,,则“”是“”的必要不充分条件,C正确;对于D,,,则“”是“”的充分不必要条件,D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题12、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:13、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意14、7【解析】根据题意直接求解即可【详解】解:因为,所以,故答案为:715、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.16、【解析】利用空间两点间的距离公式求解.【详解】由空间直角坐标系中两点间距离公式可得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)=(2,3)或=(6,5).【解析】(1)利用向量线性坐标运算即可求解.(2)根据向量共线的坐标表示以及向量模的坐标表示列方程组即可求解.【详解】解:(1)若=m+n,则(4,1)=m(3,2)+n(-1,2)即所以(2)设=(x,y),则-=(x-4,y-1),+=(2,4)(-)(+),|-|=2解得或所以=(2,-3)或=(6,5)18、(1)当时,,当时,;(2)【解析】(1)化简得,再求三角函数的最值得解;(2)先求出函数的单调增区间为,可得在单调递增,即得解.【详解】(1)∵,当时,,,当时,,(2)因为,则,解得,令,得,可得在单调递增,若上单调递增,则,所以的取值范围是【点睛】关键点睛:解答第二问的关键求出函数在单调递增,即得到.19、(1)(2)【解析】(1)利用列举法求解即可;(2)利用列举法求解即可.【小问1详解】由题意,设4名志愿者为甲,乙,丙,丁,4天一轮的值班安排所有可能的结果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24个样本点设甲乙相邻为事件A,则事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(丁,丙,乙,甲),(丁,丙,甲,乙),共12个样本点,故【小问2详解】设甲或乙被安排在前两天值班的为事件B则事件B包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲,丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),共20个样本点,故.20、(1);(2)【解析】(1)分两段解不等式,解得结果即可得解;(2)求出当时,,再根据函数的单调性求出最小值为,解不等式可得解.【详解】(1)由题意,当可得,当时,,解得,此时;当时,,解得,此时,综上可得,所以病人一次服用9克的药剂,则有效治疗时间可达小时;(2)当时,,由,在均为减函数,可得在递减,即有,由,可得,可得m的最小值为【点睛】本题考查了分段函数的应用,正确求出分段函数解析式是解题关键,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论