河北邢台市南和一中2026届高二数学第一学期期末检测试题含解析_第1页
河北邢台市南和一中2026届高二数学第一学期期末检测试题含解析_第2页
河北邢台市南和一中2026届高二数学第一学期期末检测试题含解析_第3页
河北邢台市南和一中2026届高二数学第一学期期末检测试题含解析_第4页
河北邢台市南和一中2026届高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北邢台市南和一中2026届高二数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前项和为,,,则()A. B.C. D.2.已知数列中,,当时,,设,则数列的通项公式为()A. B.C. D.3.已知函数,则()A. B.C. D.4.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.35.已知直线,当变化时,所有直线都恒过点()A.B.C.D.6.若,则=()A.244 B.1C. D.7.等比数列中,,,则()A. B.C. D.8.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数,,,,…构成的数列的第项,则的值为()A. B.C. D.9.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.10.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和11.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.2012.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.正方体的棱长为2,点为底面正方形的中心,点在侧面正方形的边界及其内部运动,若,则点的轨迹的长度为______14.若椭圆的一个焦点为,则p的值为______15.九连环是中国的一种古老智力游对,它用九个圆环相连成串,环环相扣,以解开为胜,趣味无穷.中国的末代皇帝溥仪(1906-1967)也曾有一个精美的由九个翡翠缳相连的银制的九连环(如图).现假设有个圆环,用表示按照某种规则解下个圆环所需的银和翠玉制九连环最少移动次数,且数列满足,,则___________.16.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在上单调递增,求的取值范围;(2)若在上存在极值点,证明:.18.(12分)2021年7月29日,中国游泳队获得了女子米自由泳接力决赛冠军并打破世界纪录.受奥运精神的鼓舞,某游泳俱乐部组织100名游泳爱好者进行自由泳1500米测试,并记录他们的时间(单位:分钟),将所得数据分成5组:,,,,,整理得到如图所示的频率分布直方图.(1)求出直方图中m的值;(2)利用样本估计总体的思想,估计这100位游泳爱好者1500米自由泳测试时间的平均数和中位数(同一组中的数据用该组区间中点值作代表).19.(12分)如图,在三棱锥A-BCD中,O为线段BD中点,是边长为1正三角形,且OA⊥BC,AB=AD(1)证明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE与平面BCD的夹角的余弦值20.(12分)如图,已知多面体,,,均垂直于平面,,,,(1)证明:平面;(2)求直线平面所成的角的正弦值21.(12分)已知椭圆的离心率为,短轴端点到焦点的距离为2(1)求椭圆的方程;(2)设为椭圆上任意两点,为坐标原点,且以为直径的圆经过原点,求证:原点到直线的距离为定值,并求出该定值22.(10分)已知的展开式中前三项的二项式系数之和为46,(1)求n;(2)求展开式中系数最大的项

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用已知条件求得,由此求得.【详解】依题意,解得,所以.故选:C【点睛】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.2、A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A3、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.4、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.5、D【解析】将直线方程整理为,从而可得直线所过的定点.【详解】可化为,∴直线过定点,故选:D.6、D【解析】分别令代入已知关系式,再两式求和即可求解.【详解】根据,令时,整理得:令x=2时,整理得:由①+②得,,所以.故选:D.7、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D8、B【解析】根据杨辉三角可得数列的递推公式,结合累加法可得数列的通项公式与.【详解】由已知可得数列的递推公式为,且,且,故,,,,,等式左右两边分别相加得,,故选:B.9、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.10、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C11、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.12、A【解析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取中点,利用线面垂直的判定方法可证得平面,由此可确定点轨迹为,再计算即可.【详解】取中点,连接,平面,平面,,又四边形为正方形,,又,平面,平面,又平面,;由题意得:,,,,;平面,,平面,,在侧面的边界及其内部运动,点轨迹为线段;故答案为:.14、3【解析】利用椭圆标准方程概念求解【详解】因为焦点为,所以焦点在y轴上,所以故答案:315、684【解析】利用累加法可求得的值.【详解】当且时,,所以,.故答案为:.16、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由题得,在,上为单调递增的函数,在,上恒成立,分类讨论,再次利用导数研究函数的最值即可;(2)由(1)可知,在存在极值点,则且,求得,再两次求导即可得结论.【小问1详解】由题得,在,上为单调递增的函数,在,上恒成立,设,当时,由,得,在,上为增函数,则,在,上恒成立,满足命题,当时,由,得,在上为减函数,,时,,即,不满足恒成立,不成立,综上:的取值范围为.小问2详解】证明:由(1)可知,在存在极值点,则且即:要证只需证即证又由(1)可知在上为增函数,且,成立.要证只需证即证:设则即在上增函数在为增函数成立.综上,成立.18、(1)(2),【解析】(1)利用频率之和也即各矩形的面积和为1即可求解.(2)利用平均数和中位数的计算方法求解即可.【小问1详解】由,可得.【小问2详解】平均数为:,设中位数为,则,解得.19、(1)证明见解析(2)【解析】(1)由题意可得OA⊥平面BCD,从而可证明.(2)作OF⊥BD交BC于点F,如图,以O为坐标原点,分别以OF,OD,OA所在直线轴建立空间直角坐标系,利用向量法可求解.【小问1详解】因为AB=AD,O为BD中点,所以OA⊥BD因为OA⊥BC,且BD,BC平面BCD,BD∩BC=B,所以OA⊥平面BCD又因为OA平面ABD,所以平面ABD⊥平面BCD【小问2详解】作OF⊥BD交BC于点F,如图,以O为坐标原点,分别以OF,OD,OA所在直线轴建立空间直角坐标系因为三角形OCD为边长为1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),设平面EBC的法向量为=()因为⊥BE,⊥BC,所以令,则,,所以已知平面BCD的法向量所以所以平面EBC与平面BCD的夹角的余弦值为20、(1)证明见解析;(2)【解析】(1)由已知条件可得,,则,,再利用线面垂直的判定定理可证得结论;(2)如图,过点作,交直线于点,连接,可证得平面,从而是与平面所成的角,然后在求解即可【详解】(1)证明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如图,过点作,交直线于点,连接由平面,平面,得平面平面,由,得平面,所以是与平面所成的角由,,得,,所以,故因此,直线与平面所成的角的正弦值是【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点作,交直线于点,连接,然后结合条件可证得是与平面所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题21、(1)(2)证明见解析,定值为【解析】(1)根据题意得到,,得到椭圆方程.(2)考虑直线斜率存在和不存在两种情况,联立方程,根据韦达定理得到根与系数的关系,将题目转化为,化简得到,代入计算得到答案.【小问1详解】椭圆的离心率为,短轴端点到焦点的距离为,故,,故椭圆方程为.【小问2详解】当直线斜率存在时,设直线方程为,,,则,即,,以为直径的圆经过原点,故,即,即,化简整理得到:,原点到直线的距离为.当直线斜率不存在时,为等腰直角三角形,设,则,解得,即直线方程为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论