吉林省吉林市第一中学2026届高二数学第一学期期末复习检测模拟试题含解析_第1页
吉林省吉林市第一中学2026届高二数学第一学期期末复习检测模拟试题含解析_第2页
吉林省吉林市第一中学2026届高二数学第一学期期末复习检测模拟试题含解析_第3页
吉林省吉林市第一中学2026届高二数学第一学期期末复习检测模拟试题含解析_第4页
吉林省吉林市第一中学2026届高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市第一中学2026届高二数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.22.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.633.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.4.已知函数在上单调递减,则实数的取值范围是()A. B.C. D.5.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.7.已知O为坐标原点,,点P是上一点,则当取得最小值时,点P的坐标为()A. B.C. D.8.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.9.命题“,”的否定是()A., B.,C., D.,10.等差数列中,,则前项的和()A. B.C. D.11.在区间内随机取一个数x,则使得的概率为()A. B.C. D.12.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.曲线围成的图形的面积是__________14.在空间直角坐标系中,已知向量,则在轴上的投影向量为________.15.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.16.已知正数,满足.若恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分18.(12分)已知函数其中.(1)当时,求函数的单调区间;(2)当时,函数有两个零点,,满足,证明.19.(12分)若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由20.(12分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长21.(12分)已知数列的前项和满足,数列满足(1)求,的通项公式;(2)若数列满足,求的前项和22.(10分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A2、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.3、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.4、A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.5、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.6、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.7、A【解析】根据三点共线,可得,然后利用向量的减法坐标运算,分别求得,最后计算,经过化简观察,可得结果.【详解】设,则则∴当时,取最小值为-10,此时点P的坐标为.故选:A【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题.8、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.9、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D10、D【解析】利用等差数列下标和性质可求得,根据等差数列求和公式可求得结果.【详解】数列为等差数列,,解得:;.故选:D.11、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.12、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当,时,已知方程是,即.它对应的曲线是第一象限内半圆弧(包括端点),它的圆心为,半径为.同理,当,;,;,时对应的曲线都是半圆弧(如图).它所围成的面积是.故答案为14、【解析】根据向量坐标意义及投影的定义得解.【详解】因为向量,所以在轴上的投影向量为.故答案为:15、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.16、【解析】利用基本不等式性质可得的最小值,由恒成立可得即可求出实数的取值范围.【详解】解:因为正数,满足,所以,当且仅当时,即时取等号因为恒成立,所以,解得.故实数的取值范围是.故答案填:.【点睛】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值选③:由,得,可得,由,得,可得,∴,故,∴当时,,时,,故时,取最大值【点睛】关键点点睛:根据所选的条件,结合等差数列前n项和公式的性质、下标和相等的性质等确定数列中项的正负性,找到界点n值即可.18、(1)单调递增区间,无递减区间;(2)证明见解析【解析】(1)求出函数的导数,从而判断其正负,确定函数的单调区间;(2)根据题意可得到,进而变形为,然后换元令,将证明的问题转换为成立的问题,从而构造新函数,求新函数的导数,判断其单调性,求其最值,进而证明不等式成立.【小问1详解】时,,,令,当时,,当时,,故,则,故是单调递增函数,即的单调递增区间为,无递减区间;【小问2详解】当时,函数有两个零点,,满足,即,所以,则,令,由于,则,则x2=tx故,要证明,只需证明,即证,设,令,则,当时,,即在时为增函数,故,即,所以在时为增函数,即,即,故,即.【点睛】本题考查了利用导数求函数的单调区间以及涉及到零点的不等式的证明问题,解答时要注意导数的应用,主要是根据导数的正负判断函数的单调性,进而求函数极值或最值,解答的关键时对函数式或者不等式进行合理的变形,进而能构造新的函数,利用新的函数的单调性或最值达到证明不等式成立的目的m.19、(1);(2)存在;【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)设出直线的方程并与椭圆方程联立,化简写出根与系数关系,利用列方程,化简求得直线的斜率.【小问1详解】依题意,得椭圆的方程为【小问2详解】存在.理由如下:显然当直线的斜率不存在,即时,不满足条件故由题意可设的方程为.由是直线与椭圆的两个不同的交点,设,由消去y,并整理,得,则,解得,由根与系数的关系得,,即存在斜率的直线与椭圆交于不同的两点,使20、(1)见解析;(2)2+4.【解析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△OAB的周长【详解】(1)抛物线y2=8x的顶点、焦点、准线、对称轴、变量x的范围分别为(0,0),(2,0),x=-2,x轴,x≥0.(2)如图所示.由|OA|=|OB|可知AB⊥x轴,垂足为点M,又焦点F是△OAB的重心,则|OF|=|OM|.因为F(2,0),所以|OM|=|OF|=3.所以M(3,0).故设A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周长为2+4.【点睛】本题考查了抛物线简单性质的应用,解题关键利用好三角形重心的性质,属于中档题.21、(1),;(2).【解析】(1)由求得的递推关系,结合可得其为等比数列,从而得通项公式,代入计算得;(2)求出,由错位相减法求和【详解】(1)由可得,,即,易知,故..(2)由(1)可知,①,②,①-②得,.【点睛】方法点睛:本题主要考查等比数列的通项公式及错位相减法求和.数列求和的常用方法:公式法、错位相减法、裂项相消法、分组(并项)求和法,倒序相加法22、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论