湖南省长沙二十一中2026届高二上数学期末教学质量检测模拟试题含解析_第1页
湖南省长沙二十一中2026届高二上数学期末教学质量检测模拟试题含解析_第2页
湖南省长沙二十一中2026届高二上数学期末教学质量检测模拟试题含解析_第3页
湖南省长沙二十一中2026届高二上数学期末教学质量检测模拟试题含解析_第4页
湖南省长沙二十一中2026届高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙二十一中2026届高二上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.182.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.3.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.4.方程表示椭圆的充分不必要条件可以是()A. B.C. D.5.已知实数、满足,则的最大值为()A. B.C. D.6.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.7.若,,,则a,b,c与1的大小关系是()A. B.C. D.8.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定9.椭圆与双曲线有公共的焦点、,与在第一象限内交于点,是以线段为底边的等腰三角形,若椭圆的离心率的范围是,则双曲线的离心率取值范围是()A. B.C. D.10.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.11.已知关于x的不等式的解集为空集,则的最小值为()A. B.2C. D.412.记为等差数列的前n项和,有下列四个等式,甲:;乙:;丙:;丁:.如果只有一个等式不成立,则该等式为()A.甲 B.乙C.丙 D.丁二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上一点到其焦点的距离为,则的值为______14.关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____15.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球16.已知椭圆的左、右焦点分别为,,P为椭圆上一点,满足(O为坐标原点).若,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数18.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.19.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围20.(12分)已知各项均为正数的等比数列的前n项和为,且,(1)求数列的通项公式;(2)设,求数列的前n项和21.(12分)新疆长绒棉品质优良,纤维柔长,被世人誉为“棉中极品”,产于我国新疆的吐鲁番盆地、塔里木盆地的阿克苏、喀什等地.棉花的纤维长度是评价棉花质量的重要指标之一,在新疆某地区成熟的长绒棉中随机抽测了一批棉花的纤维长度(单位:mm),将样本数据制成频率分布直方图如下:(1)求的值;(2)估计该样本数据的平均数(同一组中的数据用该组数据区间的中点值为代表);(3)根据棉花纤维长度将棉花等级划分如下:纤维长度小于30mm大于等于30mm,小于40mm大于等于40mm等级二等品一等品特等品从该地区成熟的棉花中随机抽测两根棉花的纤维长度,用样本的频率估计概率,求至少有一根棉花纤维长度达到特等品的概率.22.(10分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B2、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.3、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.4、D【解析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.5、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.6、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D7、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.8、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C9、B【解析】求得,可得出,设椭圆和双曲线的离心率分别为、,可得,由可求得的取值范围.【详解】设,设双曲线的实轴长为,因为与在第一象限内交于点,是以线段为底边的等腰三角形,则,由椭圆的定义可得,由双曲线的定义可得,所以,,则,设椭圆和双曲线的离心率分别为、,则,即,因,则,故.故选:B.10、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.11、D【解析】根据一元二次不等式的解集的情况得出二次项系数大于零,根的判别式小于零,可得出,再将化为,由和均值不等式可求得最小值.【详解】由题意可得:,,可以得到,而,可以令,则有,当且仅当取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查均值不等式,关键在于由一元二次不等式的解集的情况得出的关系,再将所求的式子运用不等式的性质降低元的个数,运用均值不等式,是中档题.12、D【解析】分别假设甲、乙、丙、丁不成立,验证得到答案【详解】设数列的公差为,若甲不成立,则,由①,③可得,此时与②矛盾;A错,若乙不成立,则,由①,③可得,此时;与②矛盾;B错,若丙不成立,则,由①,③可得,此时;与②矛盾;C错,若丁不成立,则,由①,③可得,此时;,D对,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.14、4【解析】直接利用曲线的性质,对称性的应用可判断①②;求出可判断③;联立方程,解方程组可判断④⑤的结论【详解】对于①,将方程中的x换为﹣x,y换为﹣y,方程不变,曲线C关于原点对称,故①正确;对于②,将方程中的x换为﹣y,把y换成﹣x,方程不变,曲线C关于直线x±y=0对称,故②正确;对于③,由方程得,故曲线C不是封闭图形,故③错误;对于④,曲线C:,不是封闭图形,联立整理可得:,方程无解,故④正确;对于⑤,曲线C与曲线D:由于,解得,根据对称性,可得公共点为,故曲线C与曲线D有四个交点,这4点构成正方形,故⑤正确故答案为:415、4【解析】根据题意,由游戏规则,结合余数的性质,分析可得答案【详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:416、##【解析】由可得,再结合椭圆的性质可得为直角三角形,由题意设,则,由勾股定理可得,再结合椭圆的定义可求出离心率【详解】因为,所以,所以,因为,所以,所以为直角三角形,即,所以设,则,所以,得,因为则,所以,所以,即离心率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析,1个零点.【解析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【点睛】本题关键是是将方程零点问题转化为方程解的问题,通过讨论单调性和最值(极值)的正负即可判断零点的有无和个数.18、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.19、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论