吉林省长春九台师范高中2026届高一上数学期末质量跟踪监视模拟试题含解析_第1页
吉林省长春九台师范高中2026届高一上数学期末质量跟踪监视模拟试题含解析_第2页
吉林省长春九台师范高中2026届高一上数学期末质量跟踪监视模拟试题含解析_第3页
吉林省长春九台师范高中2026届高一上数学期末质量跟踪监视模拟试题含解析_第4页
吉林省长春九台师范高中2026届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春九台师范高中2026届高一上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-42.已知函数,若实数,则函数的零点个数为()A.0 B.1C.2 D.33.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-24.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个5.已知函数,则的零点所在区间为A. B.C. D.6.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽,而将信噪比从1000提升至4000,则大约增加了()附:A.10% B.20%C.50% D.100%7.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.8.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,09.函数的零点所在区间为A. B.C. D.10.直线与圆相切,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则__________.12.不等式的解集是__________13.已知幂函数的图象经过点(16,4),则k-a的值为___________14.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.15.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.16.已知上的奇函数是增函数,若,则的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若=2,求的值.18.已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.如图,在扇形OAB中,半径OA=1,圆心角C是扇形弧上的动点,矩形CDEF内接于扇形,且OE=OF.记∠AOC=θ,求当角θ为何值时,矩形CDEF的面积S最大?并求出这个最大的面积.21.已知函数(1)判断并说明函数的奇偶性;(2)若关于的不等式恒成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题2、D【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项.【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个,故选:D.【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题.多选题3、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键.4、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A5、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题6、B【解析】根据题意,计算出值即可;【详解】当时,,当时,,因为所以将信噪比从1000提升至4000,则大约增加了20%,故选:B.【点睛】本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.7、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C8、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性9、C【解析】要判断函数的零点位置,我们可以根据零点存在定理,依次判断区间的两个端点对应的函数值,然后根据连续函数在区间上零点,则与异号进行判断【详解】,,故函数的零点必落在区间故选C【点睛】本题考查的知识点是函数的零点,解答的关键是零点存在定理:即连续函数在区间上与异号,则函数在区间上有零点10、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:12、【解析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【点睛】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题13、【解析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.14、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:15、【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【点睛】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.16、【解析】先通过函数为奇函数将原式变形,进而根据函数为增函数求得答案.【详解】因为函数为奇函数,所以,而函数在R上为增函数,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)=(2)2【解析】(1)利用诱导公式即可化简.(2)利用同角三角函数的基本关系化简并将(1)中的数据代入即可.【详解】解:(1).(2)由(1)知,【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系“齐次式”的运算,需熟记公式,属于基础题.18、(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0【解析】(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2)综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小19、(1)证明见解析;(2)证明见解析.【解析】(1)由棱柱的性质及中点得B1F1∥BF,AF1∥C1F.,从而有线面平行,再有面面平行;(2)先证明B1F1⊥平面ACC1A1,然后可得面面垂直【详解】证明:(1)在正三棱柱ABC-A1B1C1中,连接,∵F、F1分别是AC、A1C1的中点,,,,∴是平行四边形,是平行四边形,∴B1F1∥BF,AF1∥C1F.平面,平面,∴平面,同理平面,又∵B1F1∩AF1=F1,平面,平面,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,平面,∴B1F1⊥AA1.又是等边三角形,是中点,∴B1F1⊥A1C1,而A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.【点睛】本题考查证明面面平行和面面垂直,掌握面面平行和面面垂直的判定定理是解题关键20、当时,矩形的面积最大为【解析】由点向作垂线,垂足为,利用平面几何知识得到为等边三角形,然后利用表示出和,从而得到矩形的面积,利用三角函数求最值进行分析求解,即可得到答案【详解】解:由点向作垂线,垂足为,在中,,,由题意可知,,,所以为等边三角形,所以,则,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论