版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省华侨中学2026届高一数学第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“,”否定是()A., B.,C., D.,2.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.3.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.5.设m、n是两条不同的直线,、是两个不同的平面,有下列四个命题:如果,,那么;如果,,那么;如果,,,那么;如果,,,那么其中错误的命题是A. B.C. D.6.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(﹣2)=()A.﹣3 B.﹣1C.1 D.37.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π8.函数(且)的图像恒过定点()A. B.C. D.9.将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A. B.C. D.10.是边AB上的中点,记,,则向量A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数过定点,且满足,则的范围为________12.若,则______13.已知正数、满足,则的最大值为_________14.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.15.“”是“”的______条件.16.若函数在区间上为减函数,则实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图2,某摩天轮最高点距离地面高度为110m,转盘直径为100m,设置有48个座舱,开启时按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30.(1)求游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度;(2)以轴心为原点,与地面平行的直线为轴,所在的直线为轴建立直角坐标系,游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为m,求在转动一周的过程中,关于的函数解析式;(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m)关于的函数解析式,并求高度差的最大值(结果精确到0.1m).参考公式:.参考数据:,18.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.19.已知的三个顶点为,,.(1)求边所在直线的方程;(2)若边上的中线所在直线的方程为,且,求的值.20.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.21.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据命题的否定的定义判断.【详解】命题“,”的否定是:,故选:B2、C【解析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.3、B【解析】利用诱导公式,的图象变换规律,得出结论【详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B4、A【解析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.5、B【解析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得答案【详解】①如果α∥β,m⊂α,那么m∥β,故正确;②如果m⊥α,β⊥α,那么m∥β,或m⊂β,故错误;③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;④如果m∥β,m⊂α,α∩β=n,那么m∥n,故正确故答案为B【点睛】本题以命题的真假判断与应用为载体考查了空间直线与直线,直线与平面的位置关系及几何特征等知识点6、B【解析】因为函数f(x)为奇函数,所以.选B7、D【解析】由正弦函数的性质即可求得的最小值和最小正周期【详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【点睛】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题8、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.9、C【解析】函数,将其图像向右平移个单位后得到∵这个图像关于直线对称∴,即∴当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、C【解析】由题意得,∴.选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.12、【解析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【详解】,所以,故答案为:13、【解析】利用均值不等式直接求解.【详解】因为且,所以,即,当且仅当,即时,等号成立,所以的最大值为.故答案为:.14、【解析】解一元二次不等式,结合新定义即可得到结果.【详解】∵,∴,∴,故答案为:15、充分不必要【解析】解方程,即可判断出“”是“”的充分不必要条件关系.【详解】解方程,得或,因此,“”是“”的充分不必要条件.故答案为充分不必要.【点睛】本题考查充分不必要条件的判断,一般转化为集合的包含关系来判断,考查推理能力,属于基础题.16、【解析】分类讨论,时根据二次函数的性质求解【详解】时,满足题意;时,,解得,综上,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m;(2);(3),;m【解析】(1)设时,游客甲位于,得到以为始边的角,即初相,再利用周期性和最值得到函数的解析式,令求解即可.(2)由(1)的求解过程即可得出答案.(3)甲、乙两人的位置分别用点、表示,则,分别求出后甲和乙距离地面的高度,从而求出高度差,再利用已知条件给出的参考公式进行化简变形,利用三角函数的有界性进行分析求解即可.【详解】(1)设时,游客甲位于,得到以为始边的角为,根据摩天轮转一周需要30,可知座舱转动的速度约为,由题意可得,,(),当时,,所以游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度为米.(2)由(1)可得,,;(3)如图,甲、乙两人的位置分别用点、表示,则,经过后,甲距离地面的高度为,点相对于始终落后,此时乙距离地面的高度,则甲、乙高度差为,利用,可得,,当或,即或,所以的最大值为米,所以甲、乙两人距离地面的高度差的最大值约为米.18、(1);(2)答案见解析.【解析】(1)根据二次函数图象的性质确定参数a的取值区间;(2)确定方程的根或,讨论两根的大小关系得出不等式的解集.【详解】(1)因为函数的图象为开口向上的抛物线,其对称轴为直线由二次函数图象可知,的单调增区间为因为在上单调递增,所以所以,所以实数的取值区间是;(2)由得:方程的根为或①当时,,不等式的解集是②当时,,不等式的解集是③当时,,不等式的解集是综上,①当时,不等式的解集是②当时,不等式的解集是③当时,不等式的解集是19、(Ⅰ);(Ⅱ)或【解析】Ⅰ由斜率公式可得,结合点斜式方程整理计算可得BC边所在直线方程为.Ⅱ由题意可得,则△ABC的BC边上的高,据此由点到直线距离公式和直线方程得到关于m,n的方程组,求解方程组可得,或,.【详解】Ⅰ,,.,可得直线BC方程为,化简,得BC边所在直线方程为.Ⅱ由题意,得,,解之得,由点到直线的距离公式,得,化简得或,或.解得,或,.【点睛】本题主要考查直线方程的求解,点到直线距离公式的应用,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20、(1)(2)【解析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.21、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与平面内的一条直线平行.由题可证,则证得平面;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台山市2024广东江门市委宣传部合同制工作人员招聘1人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 网络通信工程师的考试题目集
- 公共关系专员招聘试题及答案参考
- 合同管理专员面试题集
- 建筑工地现场指挥面试题参考
- 工业自动化技术的高级工程师的答辩问题解析
- 2025年创意产业园区发展战略可行性研究报告
- 2025年乡镇数字广播系统建设项目可行性研究报告
- 2025年智能农机研发与推广项目可行性研究报告
- 2025年海洋生物科技开发项目可行性研究报告
- 课本剧西门豹治邺剧本
- 移动应用程序权限管理与加固项目需求分析
- 中华人民共和国简史学习通超星课后章节答案期末考试题库2023年
- 成都空港产业兴城投资发展有限公司空中客车飞机全生命周期服务项目环境影响报告
- 回族上坟怎么念
- 绳结的各种打法
- 大众滑雪智慧树知到答案章节测试2023年沈阳体育学院
- 核对稿300单元分析响应
- GB/T 26480-2011阀门的检验和试验
- GB 32166.1-2016个体防护装备眼面部防护职业眼面部防护具第1部分:要求
- 第21课《女娲造人》课件(共22张PPT) 部编版语文七年级上册
评论
0/150
提交评论