2026届江苏省苏州市常熟市高三上数学期末经典试题含解析_第1页
2026届江苏省苏州市常熟市高三上数学期末经典试题含解析_第2页
2026届江苏省苏州市常熟市高三上数学期末经典试题含解析_第3页
2026届江苏省苏州市常熟市高三上数学期末经典试题含解析_第4页
2026届江苏省苏州市常熟市高三上数学期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省苏州市常熟市高三上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题:的否定为A. B.C. D.2.设复数满足,在复平面内对应的点的坐标为则()A. B.C. D.3.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种4.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A. B.3 C. D.25.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A. B. C. D.6.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.7.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是()A.且 B.且 C.且 D.且8.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.9.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.10.已知复数满足:,则的共轭复数为()A. B. C. D.11.函数的单调递增区间是()A. B. C. D.12.设等比数列的前项和为,若,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知△的三个内角为,,,且,,成等差数列,则的最小值为__________,最大值为___________.14.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.15.已知是偶函数,则的最小值为___________.16.已知复数满足(为虚数单位),则复数的实部为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.18.(12分)已知正实数满足.(1)求的最小值.(2)证明:19.(12分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上.(1)求椭圆的标准方程;(2)如图,为直线上任一点,过点椭圆上点处的切线为,,切点分别,,直线与直线,分别交于,两点,点,的纵坐标分别为,,求的值.20.(12分)已知函数,为的导数,函数在处取得最小值.(1)求证:;(2)若时,恒成立,求的取值范围.21.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.22.(10分)(1)求曲线和曲线围成图形的面积;(2)化简求值:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.2、B【解析】

根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】在复平面内对应的点的坐标为,则,,∵,代入可得,解得.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.3、B【解析】

分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.4、A【解析】

设,直线的方程为,联立方程得到,,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.5、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.6、C【解析】

由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.7、B【解析】由且可得,故选B.8、A【解析】

依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.9、A【解析】

画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.10、B【解析】

转化,为,利用复数的除法化简,即得解【详解】复数满足:所以故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.11、D【解析】

利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.12、C【解析】

求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【详解】设等比数列的公比为,,,,因此,.故选:C.【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.14、【解析】

设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.15、2【解析】

由偶函数性质可得,解得,再结合基本不等式即可求解【详解】令得,所以,当且仅当时取等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题16、【解析】

利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.18、(1);(2)见解析【解析】

(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式及乘“1”法,证明即可.【详解】(1)因为,所以因为,所以(当且仅当,即时等号成立),所以(2)证明:因为,所以故(当且仅当时,等号成立)【点睛】本题考查了基本不等式的应用,考查了乘“1”法的技巧,考查了推理论证能力,属于中档题.19、(1);(2).【解析】

(1)因为点在椭圆上,所以,然后,利用,,得出,进而求解即可(2)设点的坐标为,直线的方程为,直线的方程为,分别联立方程:和,利用韦达定理,再利用,,即可求出的值【详解】(1)由椭圆的长半轴长为,得.因为点在椭圆上,所以.又因为,,所以,所以(舍)或.故椭圆的标准方程为.(2)设点的坐标为,直线的方程为,直线的方程为.据得.据题意,得,得,同理,得,所以.又可求,得,,所以.【点睛】本题考查椭圆标准方程的求解以及联立方程求定值的问题,联立方程求定值的关键在于利用韦达定理进行消参,属于中档题20、(1)见解析;(2).【解析】

(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,,分析可得的最小值为,分,讨论即得解.【详解】(1)由题意,令,则,知为的增函数,因为,,所以,存在使得,即.所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值.故,于是有,即,所以有,证毕.(2)由(1)知,的最小值为,①当,即时,为的增函数,所以,,由(1)中,得,即.故满足题意.②当,即时,有两个不同的零点,,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为.注意到时,,且此时,(ⅰ)当时,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)当时,,所以,所以由(*)知时,为减函数,所以,不满足时,恒成立,故舍去.故满足条件.综上所述:的取值范围是.【点睛】本题考查了函数与导数综合,考查了利用导数研究函数的最值和不等式的恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算能力,属于较难题.21、,;当时,栈道总长度最短.【解析】

连,,由切线长定理知:,,,,即,,则,,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【详解】解:连,,由切线长定理知:,,,又,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论