版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省开封市五县联考数学高二上期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则冬至当日日影长为()A.12.5尺 B.13尺C.13.5尺 D.14尺2.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.3.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-24.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.5.在区间内随机取一个数x,则使得的概率为()A. B.C. D.6.若,则()A.22 B.19C.-20 D.-197.在直三棱柱中,,M,N分别是,的中点,,则AN与BM所成角的余弦值为()A. B.C. D.8.下列命题是真命题的个数为()①不等式的解集为②不等式的解集为R③设,则④命题“若,则或”为真命题A1 B.2C.3 D.49.120°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,,,则CD的长为()A. B.C. D.10.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定11.阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A. B.C. D.12.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的通项公式,则数列的前5项为______.14.若函数的递增区间是,则实数______.15.在报名的3名男教师和3名女教师中,选取3人参加义务献血,要求男、女教师都有,则不同的选取方法数为__________.(结果用数值表示)16.如图,棱长为1的正方体,点沿正方形按的方向作匀速运动,点沿正方形按的方向以同样的速度作匀速运动,且点分别从点A与点同时出发,则的中点的轨迹所围成图形的面积大小是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.18.(12分)已知圆与x轴交于A,B两点,P是该圆上任意一点,AP,PB的延长线分别交直线于M,N两点.(1)若弦AP长为2,求直线PB的方程;(2)以线段MN为直径作圆C,当圆C面积最小时,求此时圆C的方程.19.(12分)如图,在四棱锥PABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱锥PADM的体积20.(12分)已知直线经过抛物线的焦点,且与抛物线相交于两点.(1)若直线的斜率为1,求;(2)若,求直线的方程.21.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值22.(10分)求下列函数的导数:(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设十二节气自冬至日起的日影长构成的等差数列为,利用等差数列的性质即可求解.【详解】设十二节气自冬至日起的日影长构成的等差数列为,则立春当日日影长为,立夏当日日影长为,故所以冬至当日日影长为.故选:B2、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B3、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.4、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.5、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.6、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C7、D【解析】构建空间直角坐标系,根据已知条件求AN与BM对应的方向向量,应用空间向量夹角的坐标表示求AN与BM所成角的余弦值.【详解】建立如下图所示的空间直角坐标系,∴,,,,∴,,∴,所以AN与BM所成角的余弦值为.故选:D8、B【解析】举反例判断A,解一元二次不等式确定B,由导数的运算法则求导判断C,利用逆否命题判断D【详解】显然不是的解,A错;,B正确;,,C错;命题“若,则或”的逆否命题是:若且,则,是真命题,原命题也是真命题,D正确真命题个数2.故选:B9、B【解析】由,把展开整理求解【详解】由已知可得:,,,,=41,∴.故选:B10、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.11、B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B12、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据数列的通项公式可得答案.【详解】因为,所以数列的前5项为.故答案为:14、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.15、18【解析】由题设,选取方式有两男教师一女教师或两女教师一男教师,应用组合数求出选取方法数.【详解】选取方式有:选两男教师一女教师或选两女教师一男教师,∴不同的选取方法有:种.故答案为:18.16、##【解析】画出符合要求的图形,观察得到轨迹是菱形,并进行充分性和必要性两方面的证明,并求解出轨迹图形的面积.【详解】如图,分别是正方形ABCD,,的中心,下面进行证明:菱形EFGC的周界即为动线段PQ的中点H的轨迹,首先证明:如果点H是动线段PQ的中点,那么点H必在菱形EFGC的周界上,分两种情况证明:(1)P,Q分别在某一个定角的两边上,不失一般性,设P从B到C,而Q同时从到C,由于速度相同,所以PQ必平行于,故PQ的中点H必在上;(2)P,Q分别在两条异面直线上,不失一般性,设P从A到B,同时Q从到,由于速度相同,则,由于H为PQ的中点,连接并延长,交底面ABCD于点T,连接PT,则平面与平面交线是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,从而T在AC上,可以证明FH∥AC,GH∥AC,DG∥AC,基于平行线的唯一性,显然H在DG上,综合(1)(2)可证明,线段PQ的中点一定在菱形EFGC的周界上;下面证明:如果点H在菱形EFGC的周界上,则点H必定是符合条件的线段的中点.也分两种情况进行证明:(1)H在CG或CE上,过点H作PQ∥(或BD),而与BC及(或CD及BC)分别相交于P和Q,由相似的性质可得:PH=QH,即H是PQ的中点,同时可证:BP=(或BQ=DP),因此P、Q符合题设条件(2)H在EF或FG上,不失一般性,设H在FG上,连接并延长,交平面AC于点T,显然T在AC上,过T作TP∥CB于点P,则TP∥,在平面上,连接PH并延长,交于点Q,在三角形中,G是的中点,∥AC,则H是的中点,于是,从而有,又因为TP∥CB,,所以,从而,因此P,Q符合题设条件.由(1)(2),如果H是菱形EFGC周界上的任一点,则H必是符合题设条件的动线段PQ的中点,证毕.因为四边形为菱形,其中,所以边长为且,为等边三角形,,所以面积.故答案为:【点睛】对于立体几何轨迹问题,要画出图形,并要善于观察,利用所学的立体几何方面的知识,大胆猜测,小心验证,对于多种情况的,要画出相应的图形,注意分类讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)16【解析】(1)设抛物线的标准方程为:,再代入求解即可.(2)根据焦点弦公式求解即可.【小问1详解】由题意知抛物线C的对称轴是y轴,点在曲线C上,所以抛物线开口向上,设抛物线的标准方程为:,代入点的坐标得:,解得则抛物线的标准方程为:.【小问2详解】焦点,则直线的方程是,设,,由得,,所以,则,故.18、(1)或;(2).【解析】(1)根据圆的直径的性质,结合锐角三角函数定义进行求解即可;(2)根据题意,结合基本不等式和圆的标准方程进行求解即可.【小问1详解】在方程中,令,解得,或,因为AP,PB的延长线分别交直线于M,N两点,所以,圆心在x轴上,所以,因为,,所以有,当P在x轴上方时,直线PB的斜率为:,所以直线PB的方程为:,当P在x轴下方时,直线PB的斜率为:,所以直线PB的方程为:,因此直线PB的方程为或;【小问2详解】由(1)知:,,所以设直线的斜率为,因此直线的斜率为,于是直线的方程为:,令,,即直线的方程为:,令,,即,因为同号,所以,当且仅当时取等号,即当时取等号,于是有以线段MN为直径作圆C,当圆C面积最小时,此时最小,当时,和,中点坐标为:,半径为,所以圆的方程为:,同理当时,和,中点坐标为:,半径为,所以圆的方程为:,综上所述:圆C的方程为.19、(1)证明见解析;(2).【解析】(1)过M作MN∥CD交PD于点N,证明四边形ABMN为平行四边形,即可证明BM∥平面PAD.(2)过B作AD的垂线,垂足为E,证明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱锥P-ADM的体积.【详解】解:(1)证明:如图,过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四边形ABMN为平行四边形∴BM∥AN.又BM⊄平面PAD,AN⊂平面PAD∴BM∥平面PAD.(2)如图,过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD∴PD⊥BE.又AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴点M到平面PAD的距离等于点B到平面PAD的距离,即BE.连接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=则三棱锥PADM的体积VP-ADM=VM-PAD=×S△PAD×BE=×3×=.20、(1)8(2)【解析】(1)设,由,进而结合抛物线的定义,将点到焦点的距离转化为到准线的距离,最后求得答案;(2)由,所以,设出直线方程并代入抛物线方程,进而结合根与系数的关系求得答案.【小问1详解】设,抛物线的准线方程为:,因为,由抛物线定义可知,.直线,代入抛物线方程化简得:,则,所以.【小问2详解】设,代入抛物线方程化简得:,所以,因为,所以,于是则直线的方程为:.21、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮管理师面试题及成本控制方法含答案
- 产品设计员技能考核与参考题目
- 2025年健康食品产业化项目可行性研究报告
- 2025年人工智能客服系统构建项目可行性研究报告
- 2025年养老服务智能平台构建项目可行性研究报告
- 2025年智能家居解决方案企业项目可行性研究报告
- 2025年城市生活垃圾分类处理项目可行性研究报告
- 2025年多功能移动支付应用开发项目可行性研究报告
- 2026年天津公安警官职业学院单招职业适应性测试题库带答案详解
- 校园历程与未来
- 石油管道巡护安全培训课件
- T/ZSSP 0005-2022方便食品(速食汤、羹)
- 2025年中国特价式洗车机数据监测报告
- 智能教育设备设备使用风险防控方案
- 2026年高考数学复习策略讲座
- 大数据与人工智能导论(厦门大学)学习通网课章节测试答案
- 土石坝除险加固设计规范(2025版)
- 移动卫星通信终端创新创业项目商业计划书
- 前期物业服务招标投标管理办法
- 危重症患者体温管理课件
- 033《知识产权法》电大期末考试题库及答案
评论
0/150
提交评论