山东省微山县二中2026届高二数学第一学期期末考试试题含解析_第1页
山东省微山县二中2026届高二数学第一学期期末考试试题含解析_第2页
山东省微山县二中2026届高二数学第一学期期末考试试题含解析_第3页
山东省微山县二中2026届高二数学第一学期期末考试试题含解析_第4页
山东省微山县二中2026届高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省微山县二中2026届高二数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题P:,,则命题P的否定为()A., B.,C., D.,2.函数的单调递减区间是()A. B.C. D.3.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.34.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.165.命题:,否定是()A., B.,C., D.,6.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.7.若数列满足,则的值为()A.2 B.C. D.8.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.9.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④10.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.12011.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.112.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.522二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_____________.14.数列中,,则______15.已知椭圆的右焦点为,短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是______________16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知某学校的初中、高中年级的在校学生人数之比为9:11,该校为了解学生的课下做作业时间,用分层抽样的方法在初中、高中年级的在校学生中共抽取了100名学生,调查了他们课下做作业的时间,并根据调查结果绘制了如下频率分布直方图:(1)在抽取的100名学生中,初中、高中年级各抽取的人数是多少?(2)根据频率分布直方图,估计学生做作业时间的中位数和平均时长(同一组中的数据用该组区间的中点值作代表);(3)另据调查,这100人中做作业时间超过4小时的人中2人来自初中年级,3人来自高中年级,从中任选2人,恰好1人来自初中年级,1人来自高中年级的概率是多少18.(12分)已知三角形ABC的内角A,B,C的对边分别为a,b,c,且(1)求角B;(2)若,角B的角平分线交AC于点D,,求CD的长19.(12分)已知数列的前n项和为,且.(1)求数列的通项公式;(2)若,设,求数列的前n项和.20.(12分)已知:对任意,都有;:存在,使得(1)若“且”为真,求实数的取值范围;(2)若“或”为真,“且”为假,求实数的取值范围21.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.22.(10分)已知直线l过点,与两坐标轴的正半轴分别交于A,B两点,O为坐标原点(1)若的面积为,求直线l的方程;(2)求的面积的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B2、D【解析】求导后,利用求得函数的单调递减区间.【详解】解:,则,由得,故选:D.3、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B4、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A5、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D6、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来7、C【解析】通过列举得到数列具有周期性,,所以.详解】,同理可得:,可得,则.故选:C.8、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A9、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B10、B【解析】利用组合数计算出正确答案.【详解】甲乙两类课程都有选择的不同选法种数为.故选:B11、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.12、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导,求出切线斜率,进而写出切线方程.【详解】,则,故切斜方程为:,即故答案为:14、1【解析】根据可得,则,所以可得数列是以6为周期周期数列,再由计算出的值,再利用对数的运算性质可求得结果【详解】因为,所以,所以,所以数列是以6为周期的周期数列,因为,,所以,所以,所以所以,故答案为:115、【解析】设左焦点为,连接,.则四边形是平行四边形,可得.设,由点M到直线l的距离不小于,即有,解得.再利用离心率计算公式即可得出范围【详解】设左焦点为,连接,.则四边形是平行四边形,故,所以,所以,设,则,故,从而,,,所以,即椭圆的离心率的取值范围是【点睛】本题考查了椭圆的定义标准方程及其性质、点到直线的距离公式、不等式的性质,考查了推理能力与计算能力,属于中档题16、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)初中、高中年级所抽取人数分别为45、55(2)2.375小时,2.4小时(3)【解析】(1)依据分层抽样的原则列方程即可解决;(2)依据频率分布直方图计算学生做作业时间的中位数和平均时长即可;(3)依据古典概型即可求得恰好1人来自初中年级,1人来自高中年级的概率.【小问1详解】设初中、高中年级所抽取人数分别为x、y,由已知可得,解得;【小问2详解】的频率为,的频率为,的频率为因为,,所以中位数在区间上,设为x,则,解得,所以学生做作业时间的中位数为2.375小时;平均时长为小时.故估计学生做作业时间的中位数为2.375小时,平均时长为2.4小时【小问3详解】2人来自初中年级,记为,,3人来自高中年级,记为,,,则从中任选2人,所有可能结果有:,,,,,,,,,共10种,其中恰好1人来自初中年级,1人来自高中年级有6种可能,所以恰好1人来自初中年级,1人来自高中年级的概率为18、(1)(2)【解析】(1)根据正弦定理边角互化得,进而得;(2)根据题意得,进而在中,由余弦定理即可得答案.【小问1详解】解:因为,所以由正弦定理可得,所以,即,因为,所以,故,因为,所以【小问2详解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得19、(1)(2).【解析】(1)由数列的前n项和与通项公式之间的关系即可完成.(2)由错位相减法即可解决此类“差比”数列的求和.【小问1详解】由,得当时,,上下两式相减得,,又当时,满足上式,所以数列的通项公式;【小问2详解】由(1)可知,所以,则,上下两式相减得,所以.20、(1).(2).【解析】(1)由已知得,均为真命题,分别求得为真命题,为真命题时,实数的取值范围,再由集合的交集运算求得答案;(2)由已知得,一真一假,建立不等式组,求解即可.【小问1详解】解:因为“且”为真命题,所以,均为真命题若为真命题,则,解得;若为真命题,则,当且仅当,即时,等号成立,此时故实数的取值范围是;【小问2详解】解:若“或”为真,“且”为假,则,一真一假当真,假时,则得;当假,真时,则得故实数的取值范围为21、(1)(2)【解析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是菱形.由,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论