版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省宁波市东恩中学高一上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A B.C. D.2.已知关于的方程的两个实根为满足则实数的取值范围为A. B.C. D.3.在平面直角坐标系中,直线的斜率是()A. B.C. D.4.已知集合,,若,则的值为A.4 B.7C.9 D.105.已知直线和直线,则与之间的距离是()A. B.C.2 D.6.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数的图象如图所示,则函数的零点为()A. B.C. D.8.函数的图象大致是A. B.C. D.9.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.410.若在是减函数,则的最大值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数在区间上单调递减,则___________.12.若,则______.13.的值为_______14.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________15.若函数在区间上单调递减,在上单调递增,则实数的取值范围是_________16.设,,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.18.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围19.(1)化简(2)求值.20.函数.(1)求,;(2)求函数在上的最大值与最小值.21.已知函数,.(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A2、D【解析】利用二次方程实根分布列式可解得.【详解】设,根据二次方程实根分布可列式:,即,即,解得:.故选D.【点睛】本题考查了二次方程实根的分布.属基础题.3、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.4、A【解析】可知,或,所以.故选A考点:交集的应用5、A【解析】利用平行线间的距离公式计算即可【详解】由平行线间的距离公式得故选:A6、B【解析】先化简p,q,再利用充分条件和必要条件的定义判断.【详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B7、B【解析】根据函数的图象和零点的定义,即可得出答案.【详解】解:根据函数的图象,可知与轴的交点为,所以函数的零点为2.故选:B.8、A【解析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案【详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选A【点睛】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.9、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题10、A【解析】因为,所以由得因此,从而的最大值为,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:12、【解析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【详解】由得,即,解得故答案为:13、【解析】直接按照诱导公式转化计算即可【详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【点睛】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化14、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案15、【解析】反比例函数在区间上单调递减,要使函数在区间上单调递减,则,还要满足在上单调递增,故求出结果【详解】函数根据反比例函数的性质可得:在区间上单调递减要使函数在区间上单调递减,则函数在上单调递增则,解得故实数的取值范围是【点睛】本题主要考查了函数单调性的性质,需要注意反比例函数在每个象限内是单调递减的,而在定义域内不是单调递减的16、【解析】利用向量的坐标运算先求出的坐标,再利用向量的数量积公式求出的值【详解】因为,,,所以,所以,故答案为【点睛】本题考查向量的坐标运算,考查向量的数量积公式,熟记坐标运算法则,准确计算是关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】(1)利用判断(2),化简,通过判别式小于0,求出的范围即可(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可【详解】(1),(2)由,故;(3)由,即对任意都成立当时,;当时,;当时,综上:【点睛】思路点睛:本题考查函数新定义,重点是理解新定义的意义,本题第三问的关键是代入定义后转化为不等式恒成立问题,利用参变分离后求的取值范围,再根据,根据函数的单调性,讨论的取值,求得的最小值.18、(1)(2)单调递增,证明见解析(3)【解析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调性,求得的范围【小问1详解】函数为奇函数,可得,即,则,由的图象过,可得(1),即,解得,故;【小问2详解】,可得,,在上递增证明:设,则,由,可得,,,则,即,可得,递增;【小问3详解】当时,;当时,①时,时,;时,不满足条件,舍去;②当时,时,,,时,,,,由题意可得,,,可得,即;综上可得;③当时,时,,,时,,,,由题意可得,,,可得,可令,则在上递减,,故由,可得,即,综上可得,所以的取值范围是【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题19、(1);(2).【解析】(1)利用指数运算性质化简可得结果;(2)利用对数、指数的运算性质化简可得结果.【详解】(1)原式;(2)原式.20、(1),(2),【解析】(1)首先利用两角和的正弦公式及辅助角公式将函数化简,再代入求值即可;(2)由的取值范围求出的范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为所以即,所以,【小问2详解】解:由(1)可知,∵,∴,∴,∴,∴,令,即时取到最大值,,令,即时取到最小值.21、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年施工质量评价合同
- 2026年亲子园玩具租赁合同
- 2025年信息化办公系统升级项目可行性研究报告
- 2025年生物降解塑料产业发展项目可行性研究报告
- 2025年文创产品开发与营销项目可行性研究报告
- 2025年园区一体化管理平台可行性研究报告
- 2025年人工智能交通管理系统可行性研究报告
- 终止生产合同范本
- 熟人卖房合同范本
- 电商行业平台运营面试技巧及答案
- 中华人民共和国特种设备安全法培训课件
- 肥皂盒塑料模具设计说明书
- FANUC.PMC的编程培训课件
- 五星级酒店灯光设计顾问合同
- 22 个专业 95 个病种中医临床路径(合订本)
- 医学院大学--心脏损伤课件
- GB/T 25333-2010内燃、电力机车标记
- IBM-I2详细介绍课件
- 第八章-景观生态学与生物多样性保护-2课件
- 华南理工大学数字电子技术试卷(含答案)
- 国开旅游经济学第2章自测试题及答案
评论
0/150
提交评论