版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省三亚市华侨学校2026届数学高二上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.2.在各项均为正数的等比数列中,若,则()A.6 B.12C.56 D.783.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.4.已知抛物线的焦点为,直线过点与抛物线相交于两点,且,则直线的斜率为()A. B.C. D.5.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.直线的倾斜角为A. B.C. D.7.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.8.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.9.复数的共轭复数是A. B.C. D.10.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.11.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.12.在如图所示的棱长为1的正方体中,点P在侧面所在的平面上运动,则下列四个命题中真命题的个数是()①若点P总满足,则动点P的轨迹是一条直线②若点P到点A的距离为,则动点P的轨迹是一个周长为的圆③若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆④若点P到平面的距离与到直线CD的距离相等,则动点P的轨迹是抛物线A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.14.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.515.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________16.设实数、满足约束条件,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.18.(12分)已知,,分别是锐角内角,,对边,,.(1)求的值;(2)若的面积为,求的值.19.(12分)已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.20.(12分)已知等比数列的首项,公比,在中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列.(1)求数列的通项公式;(2)记数列前n项的乘积为,试问:是否有最大值?如果是,请求出此时n以及最大值;若不是,请说明理由.21.(12分)某厂A车间为了确定合理的工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到数据如下:加工零件的个数x12345加工的时间y(小时)1.52.43.23.94.5(1)在给定的坐标系中画出散点图;(2)求出y关于x的回归方程;(3)试预测加工9个零件需要多少时间?参考公式:,22.(10分)在平面直角坐标系中,设点,直线,点P在直线l上移动,R是线段PF与y轴的交点,也是PF的中点.,(1)求动点Q的轨迹的方程E;(2)过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求直线MN过定点R的坐标
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A2、D【解析】由等比数列的性质直接求得.【详解】在等比数列中,由等比数列的性质可得:由,解得:;由可得:,所以.故选:D3、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D4、B【解析】设直线倾斜角为,由,及,可求得,当点在轴上方,又,求得,利用对称性即可得出结果.【详解】设直线倾斜角为,由,所以,由,,所以,当点在轴上方,又,所以,所以由对称性知,直线的斜率.故选:B.5、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.6、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题7、A【解析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A8、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.9、B【解析】因,故其共轭复数.应选B.考点:复数的概念及运算.10、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.11、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.12、C【解析】根据线面关系、距离关系可分别对每一个命题判断.【详解】若点P总满足,又,,,可得对角面,因此点P的轨迹是直线,故①正确若点P到点A的距离为,则动点P的轨迹是以点B为圆心,以1为半径的圆(在平面内),因此圆的周长为,故②正确点P到直线AB的距离PB与到点C的距离PC之和为1,又,则动点P的轨迹是线段BC,因此③不正确点P到平面的距离(即到直线的距离)与到直线CD的距离(即到点C的距离)相等,则动点P的轨迹是以线段BC的中点为顶点,直线BC为对称轴的抛物线(在平面内),因此④正确故有①②④三个故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.14、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.15、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.16、2【解析】画出不等式组对应的可行域,平移动直线后可得目标函数的最小值.【详解】不等式组对应的可行域如图所示:将初始直线平移至点时,可取最小值,由可得,故,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.18、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根据题意得到,再由关于角的余弦定理和整理化简得,再由的面积,即可求出的值.【小问1详解】由及正弦定理可得.小问2详解】由锐角中得,根据余弦定理可得,代入得,整理得,即,解得,,解得.19、(1)(2)或【解析】(1)根据焦距求出,利用面积最大值,得到求出,从而得到,求出椭圆方程;(2)分直线斜率存在和斜率不存在,结合题干条件得到,进而求出直线方程.【小问1详解】∵∴,又的面积最大值,则,所以,从而,,故椭圆的方程为:;【小问2详解】①当直线的斜率存在时,设,代入③整理得,设、,则,所以,点到直线的距离因为,即,又由,得,所以,.而,,即,解得:,此时;②当直线的斜率不存在时,,直线交椭圆于点、.也有,经检验,上述直线均满足,综上:直线的方程为或.【点睛】圆锥曲线中,有关向量的题目,要结合条件选择不同的方法,一般思路有转化为三角形面积,或者线段的比,或者由向量得到共线等.20、(1)(2)当或时,有最大值.【解析】(1)利用等比数列通项公式求解即可;(2)求出数列的前n项的乘积为,利用二次函数的性质求最值即可.【小问1详解】由已知得,数列首项,,设数列的公比为,即∴即,【小问2详解】,即当或5时,有最大值.21、(1)图见解析;(2);(3)小时.【解析】(1)根据表格数据在坐标系中描出对应点即可.(2)由表格中的数据代入公式算出,再求,即可得到方程;(3)中将自变量为9代入回归方程可得需用时间.【小问1详解】【小问2详解】由表中数据得:,,,,由x与y之间具有线性相关关系,根据公式知:,,∴回归直线方程为:【小问3详解】将代入回归直线方程得,,∴预测加工9个零件需要小时22、(1)(2)【解析】(1)由图中的几何关系可知,故可知动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即可直接写出抛物线的方程;(2)设出直线AB的方程,把点、的坐标代入抛物线方程,两式作差后,再利用中点坐标公式求出点M的坐标,同理求出点的坐标,即可求出直线MN的方程,最后可求出直线MN过哪一定点.【小问1详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力设备检测实验室管理面试题及答案
- 活动策划师考试重点与难点解析
- 供应链主管考试题含答案
- 证券从业资格考试重点突破与考点梳理含答案
- 工程管理师岗位面试题及项目控制技巧含答案
- 广西贵百河2025-2026学年高一上学期12月联考英语试题
- 2025年市场动态分析与预测系统项目可行性研究报告
- 2025年农业现代化动力系统可行性研究报告
- 2025年家具制造企业自动化升级项目可行性研究报告
- 2025年智能物流仓储系统研发可行性研究报告
- 2025年居住区智慧化改造项目可行性研究报告及总结分析
- JJG646-2006移液器检定规程
- 2025年法律实务赛项 国赛 备考考试试题库 有答案
- 感染科医护人员防护措施
- 物料异常应急预案
- 公司员工意识培训课件
- 仓库统计员的工作总结
- 第一讲 决胜“十四五”奋发向前行
- 实施指南(2025)《DL-T 5294-2023 火力发电建设工程机组调试技术规范》
- 护理手术室理论知识培训课件
- 宁德时代shl测试题库以及答案解析
评论
0/150
提交评论