江苏省东台市三仓中学2026届高一数学第一学期期末学业水平测试试题含解析_第1页
江苏省东台市三仓中学2026届高一数学第一学期期末学业水平测试试题含解析_第2页
江苏省东台市三仓中学2026届高一数学第一学期期末学业水平测试试题含解析_第3页
江苏省东台市三仓中学2026届高一数学第一学期期末学业水平测试试题含解析_第4页
江苏省东台市三仓中学2026届高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省东台市三仓中学2026届高一数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各对角中,终边相同的是()A.和 B.和C.和 D.和2.若函数的最大值为,最小值为-,则的值为A. B.2C. D.43.已知定义域为的奇函数满足,若方程有唯一的实数解,则()A.2 B.4C.8 D.164.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=310Q2+3000.设该产品年产量为Q时的平均成本为fA.30 B.60C.900 D.1805.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或6.若,,,则()A. B.C. D.7.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度8.已知函数,则方程的实数根的个数为()A. B.C. D.9.的值是()A B.C. D.10.直线的倾斜角A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________12.已知函数,若函数在区间内有3个零点,则实数的取值范围是______13.若、是关于x的方程的两个根,则__________.14.不等式的解为______15.若实数x,y满足,且,则的最小值为___________.16.已知幂函数图像过点,则该幂函数的解析式是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,18.若关于的不等式的解集为(1)求的值;(2)求不等式的解集.19.某药物研究所开发了一种新药,根据大数据监测显示,病人按规定的剂量服药后,每毫升血液中含药量y(微克)与时间x(小时)之间的关系满足:前1小时内成正比例递增,1小时后按指数型函数y=max−1(m,a为常数,且0<a<1)图象衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.(1)当a=时,求函数y=f(x)的解析式,并求使得y≥1的x的取值范围;(2)研究人员按照M=的值来评估该药的疗效,并测得M≥时此药有疗效.若病人某次服药后测得x=3时每毫升血液中的含药量为y=8,求此次服药有疗效的时长.20.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)21.已知以点为圆心的圆与直线:相切,过点的直线与圆相交于,两点,是的中点,.(1)求圆的标准方程;(2)求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用终边相同的角的定义,即可得出结论【详解】若终边相同,则两角差,A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.,故D选项错误.故选:C.【点睛】本题考查终边相同的角的概念,属于基础题.2、D【解析】当时取最大值当时取最小值∴,则故选D3、B【解析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案.【详解】由得,即,从而,所以为周期函数,且一个周期为6,所以.设,将的图象向右平移1个单位长度,可得到函数的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,即,即,解得,所以故选:.【点睛】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题.4、B【解析】利用基本不等式进行最值进行解题.【详解】解:∵某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=∴f(Q)=当且仅当3Q10=3000Q∴fQ的最小值是60故选:B5、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C6、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题7、D【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.8、B【解析】由已知,可令,要求,即为,原题转化为直线与的图象的交点情况,通过画出函数的图象,讨论的取值,即可直线与的图象的交点情况.【详解】令,则,①当时,,,,即,②当时,,,画出函数的图象,如图所示,若,即,无解;若,直线与的图象有3个交点,即有3个不同实根;若,直线与的图象有2个交点,即有2个不同实根;综上所述,方程的实数根的个数为5个,故选:9、C【解析】由,应用诱导公式求值即可.【详解】.故选:C10、A【解析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【点睛】本小题主要考查直线倾斜角与斜率,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.12、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题13、【解析】先通过根与系数的关系得到的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:,所以或,且,所以,即,因为或,所以.故答案为:.14、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:15、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.16、【解析】设出幂函数的函数表达,然后代点计算即可.【详解】设,因为,所以,所以函数的解析式是故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)k=-1,反向;(2)k=1【解析】由题得由此能求出,,与反向.由,得,由数量积运算求出【详解】,,,,即又向量,不共线,,解得,,即,故与反向,与夹角为,

,又故,即解得故时,【点睛】本题考查向量平行、向量垂直的性质等基础知识,熟记共线定理,准确计算是关键,是基础题18、(1);(2).【解析】(1)由题意可知,方程的两根为,结合根与系数的关系得出的值;(2)根据一元二次不等式的解法求解即可.【详解】(1)由题意可知,方程的两根为由根与系数的关系可知,,解得(2)由(1)可知,,即,解得即该不等式的解集为【点睛】本题主要考查了一元二次不等式的解法,属于中档题.19、(1),(2)小时【解析】(1)根据图像求出解析式;令直接解出的取值范围;(2)先求出,得到,根据单调性计算出解集即可.【小问1详解】当时,与成正比例,设为,则;所以,当时,故当时,令解得:,当时,令得:,综上所述,使得的的取值范围为:【小问2详解】当时,,解得所以,则令,解得,由单调性可知的解集为,所以此次服药产生疗效的时长为小时20、(1)见解析;(2)见解析.【解析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.21、(1);(2)或.【解析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论