四川省三台县塔山中学2026届数学高一上期末监测模拟试题含解析_第1页
四川省三台县塔山中学2026届数学高一上期末监测模拟试题含解析_第2页
四川省三台县塔山中学2026届数学高一上期末监测模拟试题含解析_第3页
四川省三台县塔山中学2026届数学高一上期末监测模拟试题含解析_第4页
四川省三台县塔山中学2026届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省三台县塔山中学2026届数学高一上期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个球的内接正方体的表面积为54,则球的表面积为()A. B.C. D.2.在下列图象中,函数的图象可能是A. B.C. D.3.已知,则角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限4.下列函数中定义域为,且在上单调递增的是A. B.C. D.5.若函数取最小值时,则()A. B.C. D.6.若,则的值为A. B.C. D.7.若a=40.9,b=log415,c=80.4,则()A.b>c>a B.a>b>cC.c>a>b D.a>c>b8.若集合,,则()A. B.C. D.9.已知全集,集合,则()A. B.C. D.10.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若在上恒成立,则k的取值范围是______.12.已知函数,,若对任意,存在,使得,则实数的取值范围是__________13.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.14.已知,,向量与的夹角为,则________15.已知一个扇形的弧所对的圆心角为54°,半径r=20cm,则该扇形的弧长为_____cm16.,的定义域为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值18.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.19.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.20.某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.013.09.97.010013.010.17.010.0据上述数据描成的曲线如图所示,该曲线可近似的看成函数的图象(1)试根据数据表和曲线,求的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?21.已知.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】球的内接正方体的对角线就是球的直径,正方体的棱长为a,球的半径为r,则,求出正方体棱长,再求球半径即可【详解】解:设正方体的棱长为a,球的半径为r,则,所以又因所以所以故选:A【点睛】考查球内接正方体棱长和球半径的关系以及球表面积的求法,基础题.2、C【解析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【点睛】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.3、A【解析】根据题意,由于,则说明正弦值和余弦值都是正数,因此可知角所在的象限是第一象限,故选A.考点:三角函数的定义点评:主要是考查了三角函数的定义的运用,属于基础题4、D【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.5、B【解析】利用辅助角公式化简整理,得到辅助角与的关系,利用三角函数的图像和性质分析函数的最值,计算正弦值即可.【详解】,其中,因为当时取得最小值,所以,故.故选:B.6、C【解析】由题意求得,化简得,再由三角函数的基本关系式,联立方程组,求得,代入即可求解.【详解】由,整理得,所以,又由三角函数的基本关系式,可得由解得,所以.故选C.【点睛】本题主要考查了三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】把化为以为底的指数和对数,利用中间值“”以及指数函数的单调性即可比较大小.【详解】,,,又因为为增函数,所以,即综上可得,a>c>b故选:D【点睛】本题考查了利用中间值以及函数的单调性比较数的大小,属于基础题.8、A【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【详解】解不等式,即,解得,则,而,所以.故选:A9、A【解析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:,则.故选:A.10、D【解析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【点睛】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【点睛】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.12、【解析】若任意,存在,使得成立,只需,∵,在该区间单调递增,即,又∵,在该区间单调递减,即,则,,13、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.14、1【解析】由于.考点:平面向量数量积;15、【解析】利用扇形的弧长公式求弧长即可.【详解】由弧长公式知:该扇形的弧长为(cm).故答案为:16、【解析】由,根据余弦函数在的图象可求得结果.【详解】由得:,又,,即的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用18、(1);(2)【解析】(1)函数为二次函数,其对称轴为.由f(x)为偶函数,可得a=2,再利用二次函数的单调性求出函数f(x)在[−1,2]上的值域;(2)根据题意可得f(x)>ax恒成立,转化为恒成立,将参数分分离出来,再利用均值不等式判断的范围即可【小问1详解】根据题意,函数为二次函数,其对称轴为.若为偶函数,则,解得,则在上先减后增,当时,函数取得最小值9,当时,函数取得最大值13,即函数在上的值域为;【小问2详解】由题意知时,恒成立,即.所以恒成立,因为,所以,当且仅当即时等号成立.所以,解得,所以a的取值范围是.19、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论