版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省张掖市民乐县第一中学数学高一上期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-222.已知,则的值是A.0 B.–1C.1 D.23.函数的部分图象如图所示,则的值分别是()A. B.C. D.4.若在是减函数,则的最大值是A. B.C. D.5.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1256.的值是A.0 B.C. D.17.直线的倾斜角为A.30° B.60°C.120° D.150°8.下列函数中,与函数的定义域与值域相同的是()A.y=sinx B.C. D.9.全集U={1,2,3,4,5,6},M={x|x≤4},则M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}10.已知向量,且,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的12.已知函数是幂函数,且在x∈(0,+∞)上递减,则实数m=________13.已知正数a,b满足,则的最小值为______14.已知向量a,b满足|a|=1,|b|=2,a与b的夹角为60°,则|a-b|=________15.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________16.已知直线,则与间的距离为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足,,且,的夹角为.(1)求;(2)若,求的值.18.在底面为平行四边形的四棱锥中,,平面,且,点是的中点(Ⅰ)求证:;(Ⅱ)求证:平面;19.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.20.已知是小于9的正整数,,,求(1)(2)(3)21.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.2、A【解析】利用函数解析式,直接求出的值.【详解】依题意.故选A.【点睛】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.3、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.4、A【解析】因为,所以由得因此,从而的最大值为,故选:A.5、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D6、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B7、A【解析】直线的斜率为,所以倾斜角为30°.故选A.8、D【解析】由函数的定义域为,值域依次对各选项判断即可【详解】解:由函数的定义域为,值域,对于定义域为,值域,,错误;对于的定义域为,值域,错误;对于的定义域为,,值域,,错误;对于的定义域为,值域,正确,故选:9、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U={1,2,3,4,5,6},M={x|x≤4}则M={5,6}.故选:B【点睛】本题考查求集合的补集,属于基础题.10、B【解析】由已知得,因为,所以,即,解得.选B二、填空题:本大题共6小题,每小题5分,共30分。11、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx12、2【解析】由幂函数的定义可得m2-m-1=1,得出m=2或m=-1,代入验证即可.【详解】是幂函数,根据幂函数的定义和性质,得m2-m-1=1解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2故答案为:2【点睛】本题考查了幂函数的定义,考查了理解辨析能力和计算能力,属于基础题目.13、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:14、【解析】|a-b|=15、x+3y-5=0或x=-1【解析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣116、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-12;(2)12.【解析】(1)按照向量的点积公式得到,再由向量运算的分配律得到结果;(2)根据向量垂直得到,按照运算公式展开得到结果即可.【详解】(1)由题意得,∴(2)∵,∴,∴,∴,∴【点睛】这个题目考查了向量的点积运算,以及向量垂直的转化;向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.18、(1)见解析;(2)见解析【解析】(Ⅰ)由已知得,,从而平面,由此能证明;(Ⅱ)连接与相交于,连接,由已知得,由此能证明平面试题解析:(Ⅰ)由平面可得AC,又,故AC平面PAB,所以.(Ⅱ)连BD交AC于点O,连EO,则EO是△PDB的中位线,所以EOPB又因为面,面,所以PB平面19、(1)见解析;(2);(3)存在,..【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出结论试题解析:(1)证明:在中为中点,所以.又侧面底面,平面平面平面,所以平面.(2)解:连接,在直角梯形中,,有且,所以四边形是平行四边形,所以.由(1)知为锐角,所以是异面直线与所成的角,因为,在中,,所以,在中,因为,所以,在中,,所以,所以异面直线与所成的角的余弦值为.(3)解:假设存在点,使得它到平面的距离为.设,则,由(2)得,在中,,所以,由得,所以存在点满足题意,此时.20、(1)(2)(3)【解析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.【小问1详解】,,.【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源业务支持工作考核标准
- 科技公司运营经理面试题及解答指南
- 2025年健康食品研发及销售项目可行性研究报告
- 2025年餐饮行业供应链优化项目可行性研究报告
- 2025年新材料研究与应用项目可行性研究报告
- 2025年电商运营与物流服务优化可行性研究报告
- 2025年智能校园解决方案项目可行性研究报告
- 2025年城市海绵体建设项目可行性研究报告
- 2026年天府新区信息职业学院单招职业技能测试题库及答案详解1套
- 2026年重庆市自贡市单招职业倾向性测试题库附答案详解
- 急性中毒的处理与抢救
- 淤泥消纳施工方案
- 附表:医疗美容主诊医师申请表
- 跌落式熔断器熔丝故障原因分析
- 2023年全市中职学校学生职业技能大赛
- 毕节市织金县化起镇污水处理工程环评报告
- 河流动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 仓库安全管理检查表
- 岭南版美术科五年级上册期末素质检测试题附答案
- 以执业医师考试为导向的儿科学临床实习教学改革
- 一年级上册美术测试题
评论
0/150
提交评论