2026届辽宁省大连市旅顺口区第三高级中学高一上数学期末质量检测模拟试题含解析_第1页
2026届辽宁省大连市旅顺口区第三高级中学高一上数学期末质量检测模拟试题含解析_第2页
2026届辽宁省大连市旅顺口区第三高级中学高一上数学期末质量检测模拟试题含解析_第3页
2026届辽宁省大连市旅顺口区第三高级中学高一上数学期末质量检测模拟试题含解析_第4页
2026届辽宁省大连市旅顺口区第三高级中学高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届辽宁省大连市旅顺口区第三高级中学高一上数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则、、的大小关系是()A. B.C. D.2.如图,在等腰梯形中,,分别是底边的中点,把四边形沿直线折起使得平面平面.若动点平面,设与平面所成的角分别为(均不为0).若,则动点的轨迹围成的图形的面积为A. B.C. D.3.已知函数,下列结论中错误的是()A.的图像关于中心对称B.在上单调递减C.的图像关于对称D.的最大值为34.若将函数的图象向左平移个单位长度,则平移后图象的对称轴为()A. B.C. D.5.已知角的终边上一点,且,则()A. B.C. D.6.的值等于()A. B.C. D.7.过点与且圆心在直线上的圆的方程为A. B.C. D.8.已知函数是上的奇函数,且对任意实数、当时,都有.如果存在实数,使得不等式成立,则实数的取值范围是A. B.C. D.9.设,,,则a,b,c的大小关系为()A. B.C. D.10.设,,则()A.且 B.且C.且 D.且二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间为______.12.若函数的定义域为[-2,2],则函数的定义域为______13.命题“”的否定是______.14.不等式的解集为,则的取值范围是_________.15.已知一等腰三角形的周长为12,则将该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为___________.(请注明函数的定义域)16.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.18.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.19.定义在上的奇函数,已知当时,(1)求在上的解析式;(2)若时,不等式恒成立,求实数的取值范围20.已知,且(1)求的值;(2)求的值.21.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为,宽为(1)若生态种植园面积为,则为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为,求的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【详解】,即,,,因此,.故选:B.2、D【解析】由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为故答案选:D点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉3、B【解析】根据三角函数的性质,依次整体代入检验即可得答案.【详解】解:对于A选项,当时,,所以是的对称中心,故A选项正确;对于B选项,当时,,此时函数在区间上不单调,故B选项错误;对于C选项,当时,,所以的图像关于对称,故C选项正确;对于D选项,的最大值为,故D选项正确.故选:B4、C【解析】由题意得,将函数的图象向左平移个单位长度,得到,由,得,即平移后的函数的对称轴方程为,故选C5、B【解析】由三角函数的定义可列方程解出,需注意的范围【详解】由三角函数定义,解得,由,知,则.故选:B.6、D【解析】利用诱导公式可求得的值.【详解】.故选:D7、B【解析】先求得线段AB的中垂线的方程,再根据圆心又在直线上求得圆心,圆心到点A的距离为半径,可得圆的方程.【详解】因为过点与,所以线段AB的中点坐标为,,所以线段AB的中垂线的斜率为,所以线段AB的中垂线的方程为,又因为圆心在直线上,所以,解得,所以圆心为,所以圆的方程为.故选:B【点睛】本题主要考查圆的方程的求法,还考查了运算求解的能力,属于中档题.8、A【解析】∵f(x)是R上的奇函数,∴,不妨设a>b,∴a﹣b>0,∴f(a)﹣f(b)>0,即f(a)>f(b)∴f(x)在R上单调递增,∵f(x)为奇函数,∴f(x﹣c)+f(x﹣c2)>0等价于f(x﹣c)>f(c2﹣x)∴不等式等价于x﹣c>c2﹣x,即c2+c<2x,∵存在实数使得不等式c2+c<2x成立,∴c2+c<6,即c2+c﹣6<0,解得,,故选A点睛:处理抽象不等式的常规方法:利用单调性及奇偶性,把函数值间的不等关系转化为具体的自变量间的关系;同时注意区分恒成立问题与存在性问题.9、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A10、B【解析】容易得出,,即得出,,从而得出,【详解】,.又,即,,,故选B.【点睛】本题考查对数函数单调性的应用,求解时注意总结规律,即对数的底数和真数同时大于1或同时大于0小于1,函数值大于0;若一个大于1,另一个大于0小于1,函数值小于0二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先将函数拆分成内外层函数,根据复合函数单调性的判断方法求解.【详解】函数分成内外层函数,是减函数,根据“同增异减”的判断方法可知求函数的单调递增区间,需求内层函数的减区间,函数的对称轴是,的减区间是,所以函数的单调递增区间为.故答案为:【点睛】本题考查复合函数的单调性,意在考查基本的判断方法,属于基础题型,判断复合函数的单调性根据“同增异减”的方法判断,当内外层单调性一致时为增函数,当内外层函数单调性不一致时为减函数,有时还需注意定义域.12、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为13、【解析】根据全称命题的否定是特称命题,写出结论.【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.14、[0,1)##0≤k<1【解析】分k=0和k≠0两种情况进行讨论.k≠0时,可看为函数恒成立,结合二次函数的图像性质即可求解.【详解】①当时,不等式可化为1>0,此时不等式的解集为,符合题意;②当时,要使得不等式的解集为,则满足,解得;综上可得,实数的取值范围是.故答案:.15、【解析】根据题意得,再结合两边之和大于第三边,底边长大于得,进而得答案.【详解】解:根据题意得,由三角形两边之和大于第三边得,所以,即,又因为,解得所以该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为故答案为:16、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.18、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减,只需即可,得,∴满足题意.综上所述,的取值范围为.19、(1);(2)【解析】(1)由函数是奇函数,求得,再结合函数的奇偶性,即可求解函数在上的解析式;(2)把,不等式恒成立,转化为,构造新函数,结合基本初等函数的性质,求得函数的最值,即可求解【详解】解:(1)由题意,函数是定义在上的奇函数,所以,解得,又由当时,,当时,则,可得,又是奇函数,所以,所以当时,(2)因为,恒成立,即在恒成立,可得在时恒成立,因为,所以,设函数,根据基本初等函数的性质,可得函数在上单调递减,因为时,所以函数的最大值为,所以,即实数的取值范围是【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的恒成立问题的求解,其中解答中熟记函数的奇偶性,以及利用分离参数,结合函数的最值求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题20、(1)7(2)【解析】(1)根据题意求得,然后利用两角和的正切公式即可得出答案;(2)利用诱导公式及二倍角的余弦公式,结合平方关系化弦为切计算即可得解.【小问1详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论