版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市北京路中学2026届数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知当时,函数取最大值,则函数图象的一条对称轴为A. B.C. D.2.设函数的部分图象如图所示,若,且,则()A. B.C. D.3.设命题p:∀x∈0,1,x>xA.∀x∈0,1,x<x3C.∀x∈0,1,x≤x34.已知幂函数的图象过(4,2)点,则A. B.C. D.5.函数,则的最大值为()A. B.C.1 D.6.如果,那么下列不等式中,一定成立的是()A. B.C. D.7.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.8.条件p:|x|>x,条件q:,则p是q的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件9.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a10.若,,,则有A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则__12.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=113.若幂函数在区间上是减函数,则整数________14.已知函数的图象恒过定点,若点也在函数的图象上,则_________15.计算_________.16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a18.求解下列问题:(1)角的终边经过点,且,求的值(2)已知,,求的值19.已知函数.(1)求,的值;(2)在给定的坐标系中,画出的图象(不必列表);(3)若关于的方程恰有3个不相等的实数解,求实数的取值范围.20.已知,且,(1)求,的值;(2),求的值21.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由最值确定参数a,再根据正弦函数性质确定对称轴【详解】由题意得因此当时,,选A.【点睛】本题考查三角函数最值与对称轴,考查基本分析求解能力,属基础题.2、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C3、D【解析】直接根据全称命题的否定,即可得到结论.【详解】因为命题p:∀x∈0,1,x所以¬p:∃x∈0,1,x故选:D4、A【解析】详解】由题意可设,又函数图象过定点(4,2),,,从而可知,则.故选A5、C【解析】,然后利用二次函数知识可得答案.【详解】,令,则,当时,,故选:C6、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.7、C【解析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.8、D【解析】解不等式得到p:,q:或,根据推出关系得到答案.【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件故答案为:D9、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.10、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.12、-14【解析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-13、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:214、【解析】根据对数过定点可求得,代入构造方程可求得结果.【详解】,,,解得:.故答案为:.15、1【解析】,故答案为116、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称轴为,单调减区间(2)【解析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可;(2)由正弦函数的性质得出函数的最大值与最小值,进而得出.【小问1详解】由可得,函数的对称轴为由可得,即单调减区间为【小问2详解】18、(1)或(2)【解析】(1)结合三角函数的定义求得,由此求得.(2)通过平方的方法求得,由此求得.【小问1详解】依题意或.所以或,所以或.【小问2详解】由于,所以,,由于,所以,,,所以,所以,所以,,所以19、(1),(2)图象见解析(3)【解析】(1)由函数解析式直接代入求解;(2)根据函数解析式及函数的性质画出图象;(3)利用数形结合的方法可求解.【小问1详解】由解析可得:,因,所以.【小问2详解】函数的图象如下:【小问3详解】方程有3个不相等的实数解等价于函数的图象与的图象有三个交点,结合(2)中的图象可得的取值范围为.20、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围21、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与平面内的一条直线平行.由题可证,则证得平面;(2)欲证线面垂直,则需证直线垂直于平面内的两条相交直线.连接,可证得,从而可证得平面;(3)由(2)可知,为三棱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江长兴空域产业发展有限公司招聘职业经理人1人参考笔试题库附答案解析
- 2025内蒙古鄂尔多斯羊绒服装集团绒纺事业部招聘20人备考笔试试题及答案解析
- 2025广东广州市越秀区人民街道办事处招聘辅助人员2人备考笔试试题及答案解析
- 2025重庆市大足区国衡商贸有限责任公司招聘派遣制人员1人考试备考题库及答案解析
- 重庆医科大学附属北碚医院招聘护理10人考试备考题库及答案解析
- 2025福建省国银保安服务有限公司招聘教官2人模拟笔试试题及答案解析
- 2025黑龙江哈尔滨启航劳务派遣有限公司派遣到哈尔滨工业大学航天学院空间控制与惯性技术研究中心招聘参考考试题库及答案解析
- 2025湖北智新半导体有限公司招聘备考笔试试题及答案解析
- 重庆医科大学附属北碚医院招聘护理10人参考笔试题库附答案解析
- 网店合伙合同协议
- 月子会所的礼仪培训课件
- 大学生当兵职业生涯规划书
- DB23T 3410-2023 黑龙江省居住绿地设计标准
- GB/T 31167-2023信息安全技术云计算服务安全指南
- 北京师范大学研究生培养方案
- 新防火门使用说明书
- 石化工操作工岗位HSE培训
- 高中物理 人教版 必修二 圆周运动-1圆周运动教学
- 中软国际劳动合同电子
- 中国现代文学三十年-30年代诗歌
- GB/T 39167-2020电阻点焊及凸焊接头的拉伸剪切试验方法
评论
0/150
提交评论