版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水中学滁州分校2026届高一上数学期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.42.下列结论中正确的是()A.当时,无最大值 B.当时,的最小值为3C.当且时, D.当时,3.在如图所示中,二次函数与指数函数的图象只可为A. B.C. D.4.半径为2,圆心角为的扇形的面积为()A. B.C. D.25.已知,则等于()A.1 B.2C.3 D.66.在空间直角坐标系中,已知球的球心为,且点在球的球面上,则球的半径为()A.4 B.5C.16 D.257.,,则p是q的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.9.如图,点,,分别是正方体的棱,的中点,则异面直线和所成的角是()A. B.C. D.10.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾束,中等稻禾束,下等稻禾束,各等稻禾总数都不足斗.如果将束上等稻禾加上束中等稻禾,或者将束中等稻禾加上束下等稻禾,或者将束下等稻禾加上束上等稻禾,则刚好都满斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的束上等稻禾是多少斗?()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.使得成立的一组,的值分别为_____.12.函数定义域为________.(用区间表示)13.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.14.若方程组有解,则实数的取值范围是__________15.已知向量,且,则_______.16.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.18.已知集合,集合(1)当时,求;(2)当时,求m的取值范围19.设直线与相交于一点.(1)求点的坐标;(2)求经过点,且垂直于直线的直线的方程.20.设全集,集合,(1)当时,求;(2)若,求实数的取值范围21.已知函数(,且).(1)若,试比较与的大小,并说明理由;(2)若,且,,三点在函数的图像上,记的面积为,求的表达式,并求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误;选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误;选项C,令,此时,不成立,故C错误;选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确故选:D3、C【解析】指数函数可知,同号且不相等,再根据二次函数常数项为零经过原点即可得出结论【详解】根据指数函数可知,同号且不相等,则二次函数的对称轴在轴左侧,又过坐标原点,故选:C【点睛】本题主要考查二次函数与指数函数的图象与性质,属于基础题4、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D5、A【解析】利用对数和指数互化,可得,,再利用即可求解.【详解】由得:,,所以,故选:A6、B【解析】根据空间中两点间距离公式,即可求得球的半径.【详解】球的球心为,且点在球的球面上,所以设球的半径为则.故选:B【点睛】本题考查了空间中两点间距离公式的简单应用,属于基础题.7、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B8、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.9、C【解析】通过平移的方法作出直线和所成的角,并求得角的大小.【详解】依题意点,,分别是正方体的棱,的中点,连接,结合正方体的性质可知,所以是异面直线和所成的角,根据正方体的性质可知,是等边三角形,所以,所以直线和所成的角为.故选:C【点睛】本小题主要考查线线角的求法,属于基础题.10、D【解析】设出未知数,根据题意列出方程即可解出.【详解】设束上等稻禾是斗,束中等稻禾是斗,束下等稻禾是斗,则由题可得,解得,所以束上等稻禾是斗.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、,(不唯一)【解析】使得成立,只需,举例即可.【详解】使得成立,只需,所以,,使得成立的一组,的值分别为,故答案为:,(不唯一)12、【解析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【详解】解:由,得,所以函数的定义域为,故答案为:.13、【解析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值14、【解析】,化为,要使方程组有解,则两圆相交或相切,,即或,,故答案为.15、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.16、(1)3(2)或【解析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)因为全集,,所以(2)因为,且.所以实数的取值范围是(3)因为,且,所以,所以可得18、(1);(2).【解析】(1)利用集合的交运算求即可.(2)根据已知,由集合的交集结果可得,即可求m的取值范围【小问1详解】由题设,,而,∴.【小问2详解】由,显然,∴,可得.19、(1);(2).【解析】(1)将两直线方程联立,求出方程组的公共解,即可得出点的坐标;(2)求出直线的斜率,可得出垂线的斜率,然后利用点斜式方程可得出所求直线的方程,化为一般式即可.【详解】(1)由,解得,因此,点的坐标为;(2)直线斜率为,垂直于直线的直线斜率为,则过点且垂直于直线的直线的方程为,即:.【点睛】本题两直线交点坐标计算,同时也考查了直线的垂线方程的求解,解题时要将两直线的垂直关系转化为斜率关系,考查计算能力,属于基础题.20、(1)或;(2)【解析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据,分和两种情况求解.【详解】(1)当时,或,或.(2),若,则当时,,不成立,解得,的取值范围是.21、(1)当时,;当时,;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026湖南株洲市教育局直属学校面向高校毕业生招聘教师5人考试备考题库及答案解析
- 2026年小学大队委和值日生竞选方案
- 2025重庆农投肉食品有限公司招聘13人备考笔试试题及答案解析
- 深度解析(2026)《GBT 25915.8-2021洁净室及相关受控环境 第8部分:按化学物浓度划分空气洁净度(ACC)等级》
- 2026年河北张家口经开区编办青年就业见习岗位招聘备考考试试题及答案解析
- 深度解析(2026)《GBT 25714.1-2010铁液浇包 第1部分:型式与基本参数》(2026年)深度解析
- 深度解析(2026)GBT 25668.1-2010镗铣类模块式工具系统 第1部分:型号表示规则
- 2025-2026广东佛山里水中学教师招聘参考笔试题库附答案解析
- 2026广东佛山大学诚聘海内外高层次人才招聘参考笔试题库附答案解析
- 2025辽宁建筑职业学院赴高校现场招聘10人参考考试试题及答案解析
- 2025年农业农村部耕地质量和农田工程监督保护中心度面向社会公开招聘工作人员12人备考题库有答案详解
- 2025年看守所民警述职报告
- 景区接待员工培训课件
- 客源国概况日本
- 学位授予点评估汇报
- 《Stata数据统计分析教程》
- 2024-2025学年广州市越秀区八年级上学期期末语文试卷(含答案)
- 宠物诊疗治疗试卷2025真题
- 媒体市场竞争力分析-洞察及研究
- 口腔科口腔溃疡患者漱口液选择建议
- 精神科抑郁症心理干预培训方案
评论
0/150
提交评论