版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省马关县第二中学2026届高一数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.2.关于不同的直线与不同的平面,有下列四个命题:①,,且,则②,,且,则③,,且,则④,,且,则其中正确命题的序号是A.①② B.②③C.①③ D.③④3.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.30° B.45°C.60° D.90°4.已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为()A. B.C. D.5.中国5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%6.若,且,则()A. B.C. D.7.若点在角的终边上,则()A. B.C. D.8.已知集合,则=A. B.C. D.9.函数在一个周期内的图象如图所示,则其表达式为A. B.C. D.10.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的大小关系是___________________.(用“”连结)12.已知,且,则实数的取值范围为__________13.若,则的值为______14.若函数在区间上为减函数,则实数的取值范围为________15.若角的终边与角的终边相同,则在内与角的终边相同的角是______16.已知圆心为(1,1),经过点(4,5),则圆的标准方程为_____________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.18.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围19.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率20.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点,的两条线段围成.设圆弧和圆弧所在圆的半径分别为米,圆心角为θ(弧度)(1)若,,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?21.已知角的终边经过点,,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.2、C【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【详解】对于①,若,,且,显然一定有,故正确;对于②,因为,,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于③,若,//且//,则一定有,故③正确;对于④,,,且,则与的位置关系不定,故④错故正确的序号有:①③.故选C【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.3、B【解析】利用中位线定理可得GE∥SA,则∠GEF为异面直线EF与SA所成的角,判断三角形为等腰直角三角形即可.【详解】取AC中点G,连接EG,GF,FC设棱长为2,则CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF为异面直线EF与SA所成的角∵EF=,GE=1,GF=1∴△GEF为等腰直角三角形,故∠GEF=45°故选:B.【点睛】求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.4、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16∴点M的轨迹方程是圆(x+2)2+y2=16.圆的半径为:4,所求轨迹的面积为:16π故答案为B.5、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B6、D【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D7、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数定义可得.故选:A.8、B【解析】由题意,所以.故选B考点:集合的运算9、A【解析】由图象得,周期,所以,故又由条件得函数图象的最高点为,所以,故,又,所以,故函数的解析式为.选A10、D【解析】分别代入的值,由幂函数性质判断函数增减性即可.【详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.12、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性13、0【解析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为014、【解析】分类讨论,时根据二次函数的性质求解【详解】时,满足题意;时,,解得,综上,故答案为:15、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.16、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得18、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得19、(1);(2).【解析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率【详解】解:从该班随机选1名学生,该学生既未参加社会公益活动也未参加社会实践活动的概率在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,基本事件总数,被选中且未被选中包含的基本事件个数,被选中且未被选中的概率【点睛】本题考查概率的求法,考查古典概型等基础知识,属于基础题20、(1);(2)当线段的长为5米时,花坛的面积最大.【解析】(1)根据扇形的面积公式,求出两个扇形面积之差就是所求花坛的面积即可;(2)利用弧长公式根据预算费用总计1200元可得到等式,再求出花坛的面积的表达式,结合得到的等式,通过配方法可以求出面积最大时,线段AD的长度.【详解】(1)设花坛面积为S平方米.答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东广州市越秀区人民街道办事处招聘辅助人员2人参考笔试题库附答案解析
- 2025内蒙古鄂尔多斯市达拉特旗第二批事业单位引进高层次、急需紧缺人才28人参考考试题库及答案解析
- 2025天津市西青经开区投资促进有限公司面向全国公开招聘招商管理人员4人模拟笔试试题及答案解析
- 2025年下半年贵州遵义市市直事业单位选调56人考试备考题库及答案解析
- 2025江苏南京医科大学第四附属医院(南京市浦口医院)招聘专技人员33人参考笔试题库附答案解析
- 2026中国华录集团有限公司招聘42人备考笔试题库及答案解析
- 2025福建漳州市芗江人力资源服务有限公司文化馆招聘专业技术人员备考考试试题及答案解析
- 2025广西南宁市红十字会医院招聘护理人员5人模拟笔试试题及答案解析
- 2025广东清远市连南瑶族自治县瑶华建设投资集团有限公司第三次招聘会计人员1人模拟笔试试题及答案解析
- 网店股份合同范本
- IPO融资分析师融资报告模板
- 搏击裁判员培训课件
- 2024年北京广播电视台招聘真题
- 危险废物安全措施课件
- 形势与政策(吉林大学)单元测试(第11-25章)
- 2025版寄生虫病症状解析与护理方法探讨
- 2025年国家开放大学(电大)《物理化学》期末考试备考题库及答案解析
- 无领导小组讨论面试技巧与实战案例
- 2025年及未来5年中国养老产业行业发展趋势预测及投资规划研究报告
- 2025年中国办公楼租户调查分析报告
- 环保设备销售培训
评论
0/150
提交评论