专题10 统计-期末真题(考题猜想易错必刷3大题型)(原卷版及全解全析)_第1页
专题10 统计-期末真题(考题猜想易错必刷3大题型)(原卷版及全解全析)_第2页
专题10 统计-期末真题(考题猜想易错必刷3大题型)(原卷版及全解全析)_第3页
专题10 统计-期末真题(考题猜想易错必刷3大题型)(原卷版及全解全析)_第4页
专题10 统计-期末真题(考题猜想易错必刷3大题型)(原卷版及全解全析)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10统计(考题猜想,易错必刷3大题型)【题型一】线性回归方程【题型二】非线性回归方程【题型三】独立性检验【题型一】线性回归方程一、单选题1.(23-24高二下·福建泉州·期末)在研究线性回归模型时,样本数据所对应的点均在直线上,用表示解释变量与响应变量之间的线性相关程度,则(

)A. B. C.1 D.32.(23-24高二下·黑龙江哈尔滨·期末)已知5个成对数据的散点图如下,若去掉点,则下列说法正确的是()A.变量x与变量y呈正相关 B.变量x与变量y的相关性变强C.残差平方和变大 D.样本相关系数r变大3.(23-24高二下·辽宁朝阳·期末)已知一组数据满足线性回归关系,且经验回归方程为,若,则(

)A.30 B.60 C.630 D.12004.(23-24高二下·四川德阳·期末)高温可以使病毒中的蛋白质失去活性,从而达到杀死病毒的效果,某科研团队打算构建病毒的成活率与温度的某种数学模型,通过实验得到部分数据如下表:温度x(℃)6810病毒数量y(万个)302220由上表中的数据求得回归方程为,可以预测当温度为14℃时,病毒数量为(

)参考公式:,A.12 B.10 C.9 D.11二、解答题5.(23-24高二下·河北石家庄·期末)某学院为了加强学生身体素质,特推出“校园轻氧打卡”活动,以下是前9天的打卡人数散点图.(1)求出每天打卡人数y关于天数x的经验回归方程;(2)利用经验回归方程试着预测第10天的打卡人数;附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.6.(23-24高二下·山东泰安·期末)2023年全国竞走大奖赛,暨世锦赛及亚运会选拔赛3月4日在安徽黄山开赛.重庆队的贺相红以2小时22分55秒的成绩打破男子35公里竞走亚洲纪录.某田径协会组织开展竞走的步长和步频之间的关系的课题研究,得到相应的试验数据:步频(单位:s)0.280.290.300.310.32步长(单位:)909599103117(1)根据表中数据,得到步频和步长近似为线性相关关系,求出关于的回归直线方程,并利用回归方程预测,当步长为时,步频约是多少?(2)记,其中为观测值,为预测值,为对应的残差,求(1)中步频为0.30的残差.参考数据:,.参考公式:,.7.(23-24高二下·江苏南通·阶段练习)某大学组织宣传小分队进行法律法规宣传,某宣传小分队记录了前9天每天普及的人数,得到下表:时间x(天)123456789每天普及的人数y8098129150203190258292310(1)从这9天的数据中任选2天的数据,以X表示2天中普及人数不少于200人的天数,求X的分布列和数学期望;(2)由于统计人员的疏忽,第5天的数据统计有误,如果去掉第5天的数据,试用剩下的数据求出每天普及的人数y关于天数x的线性回归方程.参考数据:,,.附:对于一组数据(,),(,),……,(,),其回归直线的斜率和截距的最小二乘估计分别为:,.8.(23-24高二下·陕西西安·期末)某中医药企业根据市场调研与模拟,得到研发投入(亿元)与产品收益(亿元)的数据统计如下:研发投入(亿元)12345产品收益(亿元)3791011(1)计算,的相关系数,并判断是否可以认为研发投入与产品收益具有较高的线性相关程度?(若,则线性相关程度一般;若,则线性相关程度较高)(2)求出关于的线性回归方程,并预测若想收益超过20(亿元),则需研发投入至少多少亿元?(结果保留一位小数)参考公式:回归直线的斜率和截距的最小二乘法估计公式,相关系数的公式分别为,,.参考数据:,,.【题型二】非线性回归方程一、解答题1.(22-23高二下·海南海口·期末)某乡政府为提高当地农民收入,指导农民种植药材,取得较好的效果.以下是某农户近5年种植药材的平均收入的统计数据:年份20182019202020212022年份代码x12345平均收入y(千元)5961646873(1)根据表中数据,现有与两种模型可以拟合y与x之间的关系,请分别求出两种模型的回归方程;(结果保留一位小数)(2)统计学中常通过比较残差的平方和来比较两个模型的拟合效果,已知的残差平方和是3.5,请根据残差平方和说明上述两个方程哪一个拟合效果更好,并据此预测2023年该农户种植药材的平均收入.参考数据及公式:,,其中.,.2.(23-24高二上·安徽马鞍山·期末)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者的前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.3.(23-24高二下·山西太原·期末)山西某地打造旅游特色村,鼓励当地村民将自己闲置房改造成民宿出租,增加农民收入.为了解在旅游淡季民宿的出租情况,随机选取6间民宿进行调查,统计它们在淡季的100天里的出租情况,得到每间民宿租金(单位:元/日)与其出租率(出租天数)的对应关系表和散点图如下:租金88128188288388488出租率0.90.70.50.30.20.15(1)请根据散点图判断,与哪个更适合此模型(不用证明),并根据下表数据(表中),求其相应的经验回归方程(保留小数点后一位).261.30.465.4121437.861.97-221.19-1.04(2)已知该地一年旅游淡季按100天计算,在此期间,民宿无论是否出租,每天都要支出租金的的费用.若民宿出租,则每天需要再支付租金的的开支.请用(1)中结论的模型,计算租金为多少元时,该民宿在这100天内的收益最大.附:;对于一组数据,其经验回归方程为.4.(23-24高二下·湖北·期末)某乡村企业希望通过技术革新增加产品收益,根据市场调研,技术革新投入经费(单位:万元)和增加收益(单位:万元)的数据如下表:46810122742555660为了进一步了解技术革新投入经费对增加收益的影响,通过对表中数据进行分析,分别提出了两个回归模型:①,②.(1)根据以上数据,计算模型①中与的相关系数(结果精确到0.01);(2)若,则选择模型①;否则选择模型②.根据(1)的结果,试建立增加收益关于技术革新投入经费的回归模型,并预测时的值(结果精确到0.01).附:i)回归直线的斜率、截距的最小二乘估计以及相关系数分别为:,,ii)参考数据:设,,,,,.5.(23-24高二下·河北石家庄·期末)一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间t(分钟)和答对人数y的统计表格如下:时间t(分钟)102030405060708090100答对人数y9870523630201511551.991.851.721.561.481.301.181.040.70.7时间t与答对人数y和的散点图如下:附:,,,,,对于一组数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为:,.请根据表格数据回答下列问题:(1)根据散点图判断,与哪个更适宜作为线性回归模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果,建立y与的回归方程;(a,b或c,d的计算结果均保留到小数点后三位)(3)根据(2)请估算要想答对人数不少于75人,至多间隔多少分钟需要重新记忆一遍.(结果四舍五入保留整数)(参考数据:,).【题型三】独立性检验一、单选题1.(23-24高二下·河北张家口·期末)某研究中心对治疗哮喘的两种药物的疗效是否有差异进行实验,并运用列联表进行检验,零假设:两种药物的疗效无差异,计算出,根据下面的小概率值的独立性检验表,认为“两种药物的疗效存在差异”犯错误的概率不超过(

)0.10.050.010.0050.0012.7063.8416.6357.87910.828A. B. C. D.2.(23-24高二下·天津滨海新·期末)现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵严重的A城市和交通拥堵不严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表:AB总计认可15823不认可51217总计2020400.100.050.0250.010.0052.7063.8415.0246.6357.879附:.根据表中的数据,下列说法中,正确的是(

)A.没有95%以上的把握认为“是否认可与城市的拥堵情况有关”B.有97.5%以上的把握认为“是否认可与城市的拥堵情况有关”C.可以在犯错误的概率不超过0.05的前提下认为“是否认可与城市的拥堵情况有关”D.可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”二、解答题3.(23-24高二下·青海西宁·期末)某学校高三年级有学生1000人,经调查,其中750人经常参加体育锻炼(称为A类同学),另外250人不经常参加体育锻炼(称为B类同学).现用按比例分配的分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100人,如果以身高达到作为达标的标准,对抽取的100人,得到以下列联表(单位:人):身高达标身高不达标总计经常参加体育锻炼40不经常参加体育锻炼15总计100(1)完成上表;(2)依据的独立性检验,能否认为经常参加体育锻炼与身高达标有关系?注:.附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.8284.(23-24高二上·贵州黔东南·期末)期末考试后,某校对甲、乙两个文科班的数学成绩进行统计,规定:大于或等于120分的为优秀,120以下的为非优秀.统计结束后,得到如下2×2列联表.已知在甲、乙两个文科班的110人中随机抽取1人为优秀的概率为(1)请完成2×2列联表.优秀非优秀总计甲班10乙班30总计110(2)是否有99.9%的把握认为“成绩优秀与班级有关”0.0500.0100.0013.8416.63510.8285.(23-24高二下·广西玉林·期末)某校进行健康体检,发现学生中近视率与性别有关.若将近视率超过50%的班级称为“近视班”,未超过的称为“非近视班”.现从该校随机抽取200人进行分析,得到数据如下所示:近视班男生:60人,女生:70人.非近视班男生:40人,女生:30人.合计男生:100人,女生:100人.(1)依据小概率值的独立性检验,能否认为“近视班”与性别有关联?(2)若从随机抽取的非近视班学生中采用分层抽样的方法抽取7人,再从7人中抽取3人,求这3人中至少有2名男生的概率.附:下表给出了独立性检验中几个常用的小概率值和相应的临界值.0.10.050.010.0050.0012.7063.8416.6357.87910.8286.(23-24高二下·四川眉山·期末)某校体育锻炼时间准备提供三项体育活动供学生选择.为了解该校学生对“三项体育活动中要有篮球”这种观点的态度(态度分为同意和不同意),随机调查了200名学生,数据如下图:单位:人男生女生合计同意7050120不同意305080合计100100200(1)依据的独立性检验,能否认为学生对“三项体育活动中要有篮球”这种观点的态度与性别有关?(2)现有足球、篮球、跳绳供学生选择.①若甲、乙两名学生从这三项运动中随机选一种,且他们的选择情况相互独立互不影响.记事件为“甲学生选择足球”,事件为“甲、乙两名学生的选择不同”,判断事件是否独立,并说明理由.②若该校所有学生每分钟跳绳个数.根据往年经验,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟跳绳个数比开始时个数增加10,该校有1000名学生,预估经过训练后该校每分钟跳182个以上人数(结果四舍五入到整数).参考公式和数据:,其中.0.0250.0100.0055.0246.6357.879若,则,,.

专题10统计(考题猜想,易错必刷3大题型)【题型一】线性回归方程【题型二】非线性回归方程【题型三】独立性检验【题型一】线性回归方程一、单选题1.(23-24高二下·福建泉州·期末)在研究线性回归模型时,样本数据所对应的点均在直线上,用表示解释变量与响应变量之间的线性相关程度,则(

)A. B. C.1 D.3【答案】A【分析】利用负相关性的定义求解即可.【详解】由样本数据可知解释变量与响应变量之间具有负相关性,所以又因为对应的点均在直线上,故,故A正确.故选:A2.(23-24高二下·黑龙江哈尔滨·期末)已知5个成对数据的散点图如下,若去掉点,则下列说法正确的是()A.变量x与变量y呈正相关 B.变量x与变量y的相关性变强C.残差平方和变大 D.样本相关系数r变大【答案】B【分析】根据已知条件,结合变量间的相关关系,结合图象分析判断即可.【详解】由散点图可知,去掉点后,与的线性相关加强,且为负相关,所以B正确,A错误;由于与的线性相关加强,所以残差平方和变小,所以C错误,由于与的线性相关加强,且为负相关,所以相关系数的绝对值变大,而相关系数为负的,所以样本相关系数r变小,所以D错误.故选:B.3.(23-24高二下·辽宁朝阳·期末)已知一组数据满足线性回归关系,且经验回归方程为,若,则(

)A.30 B.60 C.630 D.1200【答案】D【分析】根据样本中心点在回归直线方程上代入计算可得结果.【详解】易知样本数据的中心点在回归直线方程上,易知,所以,即,可得.故选:D4.(23-24高二下·四川德阳·期末)高温可以使病毒中的蛋白质失去活性,从而达到杀死病毒的效果,某科研团队打算构建病毒的成活率与温度的某种数学模型,通过实验得到部分数据如下表:温度x(℃)6810病毒数量y(万个)302220由上表中的数据求得回归方程为,可以预测当温度为14℃时,病毒数量为(

)参考公式:,A.12 B.10 C.9 D.11【答案】C【分析】设回归方程,利用表中数据,根据最小二乘原理求得系数,即得方程,再用方程代入温度预测病毒数量即可.【详解】y关于x的线性回归方程为,直线过样本中心点由表格数据得,,,,故根据最小二乘原理知,所以,即线性回归方程为;将代入方程,得,即可预测病毒数量为.故选:C二、解答题5.(23-24高二下·河北石家庄·期末)某学院为了加强学生身体素质,特推出“校园轻氧打卡”活动,以下是前9天的打卡人数散点图.(1)求出每天打卡人数y关于天数x的经验回归方程;(2)利用经验回归方程试着预测第10天的打卡人数;附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.【答案】(1)(2)340【分析】(1)依据题中所给数据先依次求出、、、,再结合最小二乘法即可求出和,进而得解.(2)将代入(1)所得经验回归方程即可得解.【详解】(1)由题得,,,,所以,每天打卡人数y关于天数x的经验回归方程为.(2)由(1)当时,,所以第10天的打卡人数预测为人.6.(23-24高二下·山东泰安·期末)2023年全国竞走大奖赛,暨世锦赛及亚运会选拔赛3月4日在安徽黄山开赛.重庆队的贺相红以2小时22分55秒的成绩打破男子35公里竞走亚洲纪录.某田径协会组织开展竞走的步长和步频之间的关系的课题研究,得到相应的试验数据:步频(单位:s)0.280.290.300.310.32步长(单位:)909599103117(1)根据表中数据,得到步频和步长近似为线性相关关系,求出关于的回归直线方程,并利用回归方程预测,当步长为时,步频约是多少?(2)记,其中为观测值,为预测值,为对应的残差,求(1)中步频为0.30的残差.参考数据:,.参考公式:,.【答案】(1),秒(2)【分析】(1)根据最小二乘法即可求解,(2)由残差的计算公式即可求解.【详解】(1)依题意可得,,,,所以回归直线方程为,将代入得,解得,所以当步长为时,步频约是秒.(2)根据(1)得到,;所以步长为0.30残差和为.7.(23-24高二下·江苏南通·阶段练习)某大学组织宣传小分队进行法律法规宣传,某宣传小分队记录了前9天每天普及的人数,得到下表:时间x(天)123456789每天普及的人数y8098129150203190258292310(1)从这9天的数据中任选2天的数据,以X表示2天中普及人数不少于200人的天数,求X的分布列和数学期望;(2)由于统计人员的疏忽,第5天的数据统计有误,如果去掉第5天的数据,试用剩下的数据求出每天普及的人数y关于天数x的线性回归方程.参考数据:,,.附:对于一组数据(,),(,),……,(,),其回归直线的斜率和截距的最小二乘估计分别为:,.【答案】(1)分布列见解析,(2)【分析】(1)利用超几何分布与数学期望公式即可得解;(2)去掉第天数据后,结合的计算公式进行转化整理求得其值,从而得解.【详解】(1)普及人数不少于200人的天数为4天,则X的所有可能取值为0,1,2,又,,.故X的分布列为:012.(2)去掉第天的数据可得统计表如下:时间天12346789每天普及的人数8098129150190258292310设原来数据的样本中心点为,去掉第5天的数据后样本中心点为,所以,,,;去掉第5天数据后,.所以,,所以剩下的数据求得的回归直线方程为:.8.(23-24高二下·陕西西安·期末)某中医药企业根据市场调研与模拟,得到研发投入(亿元)与产品收益(亿元)的数据统计如下:研发投入(亿元)12345产品收益(亿元)3791011(1)计算,的相关系数,并判断是否可以认为研发投入与产品收益具有较高的线性相关程度?(若,则线性相关程度一般;若,则线性相关程度较高)(2)求出关于的线性回归方程,并预测若想收益超过20(亿元),则需研发投入至少多少亿元?(结果保留一位小数)参考公式:回归直线的斜率和截距的最小二乘法估计公式,相关系数的公式分别为,,.参考数据:,,.【答案】(1),相关程度较高(2),9.3亿元【分析】(1)通过计算相关系数来进行判断.(2)先计算回归直线方程,并由此作出预测.【详解】(1)由表中数据可知,,,,,,则,故相关程度较高;(2),,则,,故,令,解得,故研发投入至少9.3亿元.【题型二】非线性回归方程一、解答题1.(22-23高二下·海南海口·期末)某乡政府为提高当地农民收入,指导农民种植药材,取得较好的效果.以下是某农户近5年种植药材的平均收入的统计数据:年份20182019202020212022年份代码x12345平均收入y(千元)5961646873(1)根据表中数据,现有与两种模型可以拟合y与x之间的关系,请分别求出两种模型的回归方程;(结果保留一位小数)(2)统计学中常通过比较残差的平方和来比较两个模型的拟合效果,已知的残差平方和是3.5,请根据残差平方和说明上述两个方程哪一个拟合效果更好,并据此预测2023年该农户种植药材的平均收入.参考数据及公式:,,其中.,.【答案】(1),.(2)拟合效果更好,2023年农户种植药材的平均收入8万元.【分析】(1)根据最小二乘法结合条件可得回归方程;(2)根据回归方程分别计算残差平方和,进而可得拟合效果更好,然后根据回归方程结合条件即得.【详解】(1)根据农户近5年种植药材的平均收入情况的统计数据可得:,,所以,,则,.设,则,所以,则,.所以,两种模型的回归方程分别为,.(2)回归方程为时,将值代入可得估计值分别为59,60.8,63.8,68,73.4,则残差平方和为.而的残差平方和是3.5,则,所以回归方程拟合效果更好,应选择该方程进行拟合.当时,故预测2023年该农户种植药材的平均收入为80千元,即8万元.2.(23-24高二上·安徽马鞍山·期末)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者的前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.【答案】(1)(2),40(3)分布列见解析,【分析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程;(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值;(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望.【详解】(1)根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.(2)设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87.(3)由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.3.(23-24高二下·山西太原·期末)山西某地打造旅游特色村,鼓励当地村民将自己闲置房改造成民宿出租,增加农民收入.为了解在旅游淡季民宿的出租情况,随机选取6间民宿进行调查,统计它们在淡季的100天里的出租情况,得到每间民宿租金(单位:元/日)与其出租率(出租天数)的对应关系表和散点图如下:租金88128188288388488出租率0.90.70.50.30.20.15(1)请根据散点图判断,与哪个更适合此模型(不用证明),并根据下表数据(表中),求其相应的经验回归方程(保留小数点后一位).261.30.465.4121437.861.97-221.19-1.04(2)已知该地一年旅游淡季按100天计算,在此期间,民宿无论是否出租,每天都要支出租金的的费用.若民宿出租,则每天需要再支付租金的的开支.请用(1)中结论的模型,计算租金为多少元时,该民宿在这100天内的收益最大.附:;对于一组数据,其经验回归方程为.【答案】(1)选,;(2)元.【分析】(1)观察散点图确定回归模型,换元,利用最小二乘法公式求出回归方程.(2)结合(1)求出收益的函数关系,利用导数探讨单调性并求出取最大值时的x值.【详解】(1)由散点图知,应选更合适.由,得,则,,所以.(2)依题意,,求导得,令,得,解得,当时,,随着的增大而增大,当时,,随着的增大而减小,所以当元时,民宿在这100天内的收益最大.【点睛】易错点睛:非纯属回归方程的求解,换元转化为线性回归方程求解,再利用最小二乘法求解时,要代入对应值.4.(23-24高二下·湖北·期末)某乡村企业希望通过技术革新增加产品收益,根据市场调研,技术革新投入经费(单位:万元)和增加收益(单位:万元)的数据如下表:46810122742555660为了进一步了解技术革新投入经费对增加收益的影响,通过对表中数据进行分析,分别提出了两个回归模型:①,②.(1)根据以上数据,计算模型①中与的相关系数(结果精确到0.01);(2)若,则选择模型①;否则选择模型②.根据(1)的结果,试建立增加收益关于技术革新投入经费的回归模型,并预测时的值(结果精确到0.01).附:i)回归直线的斜率、截距的最小二乘估计以及相关系数分别为:,,ii)参考数据:设,,,,,.【答案】(1)(2),约为万元【分析】(1)根据所给数据求出,,,,,即可求出相关系数;(2)根据(1)的结论,可判断选择模型②,令,求出关于的线性回归方程,即可求出关于的经验方程,再代入计算可得.【详解】(1)因为,,所以,,,模型①中,相关系数,(2)因为,所以选择模型②,令,先建立关于的线性回归方程,由于,,所以关于的线性回归方程为,即,当时,(万元),所以若投入经费万元,收益约为万元.5.(23-24高二下·河北石家庄·期末)一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间t(分钟)和答对人数y的统计表格如下:时间t(分钟)102030405060708090100答对人数y9870523630201511551.991.851.721.561.481.301.181.040.70.7时间t与答对人数y和的散点图如下:附:,,,,,对于一组数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为:,.请根据表格数据回答下列问题:(1)根据散点图判断,与哪个更适宜作为线性回归模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果,建立y与的回归方程;(a,b或c,d的计算结果均保留到小数点后三位)(3)根据(2)请估算要想答对人数不少于75人,至多间隔多少分钟需要重新记忆一遍.(结果四舍五入保留整数)(参考数据:,).【答案】(1)更适宜作为线性回归类型;(2);(3)19分钟.【分析】(1)根据给定的两个散点图即可得答案.(2)先求得的线性回归方程,再将对数式化为指数式即得与的回归方程.(3))解不等式即可得答案.【详解】(1)观察两个散点图知,更适宜作为线性回归类型.(2)依题意,,,由(1)知,,根据最小二乘法得:,,于是,因此y与的回归方程.(3)依题意,,即,则,而,于是,解得,所以要想答对人数不少于75人,至多间隔19分钟需要重新记忆一遍.【题型三】独立性检验一、单选题1.(23-24高二下·河北张家口·期末)某研究中心对治疗哮喘的两种药物的疗效是否有差异进行实验,并运用列联表进行检验,零假设:两种药物的疗效无差异,计算出,根据下面的小概率值的独立性检验表,认为“两种药物的疗效存在差异”犯错误的概率不超过(

)0.10.050.010.0050.0012.7063.8416.6357.87910.828A. B. C. D.【答案】A【分析】根据,得到犯错误的概率不超过.【详解】,,故“两种药物的疗效存在差异”犯错误的概率不超过.故选:A2.(23-24高二下·天津滨海新·期末)现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵严重的A城市和交通拥堵不严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表:AB总计认可15823不认可51217总计2020400.100.050.0250.010.0052.7063.8415.0246.6357.879附:.根据表中的数据,下列说法中,正确的是(

)A.没有95%以上的把握认为“是否认可与城市的拥堵情况有关”B.有97.5%以上的把握认为“是否认可与城市的拥堵情况有关”C.可以在犯错误的概率不超过0.05的前提下认为“是否认可与城市的拥堵情况有关”D.可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”【答案】C【分析】先计算出卡方值,再分别与各选项中的相应的小概率值比较,根据独立性检验的原理,即可作出判断【详解】由对于A,因,故有95%以上的把握认为“是否认可与城市的拥堵情况有关”,即A错误;对于B,因,故没有97.5%以上的把握认为“是否认可与城市的拥堵情况有关”,即B错误;对于C,因,故可以在犯错误的概率不超过0.05的前提下认为“是否认可与城市的拥堵情况有关”,即C正确;对于D,因,故在犯错误的概率不超过0.01的前提下不能认为“是否认可与城市的拥堵情况有关”,即D错误.故选:C.二、解答题3.(23-24高二下·青海西宁·期末)某学校高三年级有学生1000人,经调查,其中750人经常参加体育锻炼(称为A类同学),另外250人不经常参加体育锻炼(称为B类同学).现用按比例分配的分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100人,如果以身高达到作为达标的标准,对抽取的100人,得到以下列联表(单位:人):身高达标身高不达标总计经常参加体育锻炼40不经常参加体育锻炼15总计100(1)完成上表;(2)依据的独立性检验,能否认为经常参加体育锻炼与身高达标有关系?注:.附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828【答案】(1)表格见解析;(2)无关联.【分析】(1)根据题目含义填写表格即可,(2)利用列联表结合卡方计算求解即可.【详解】(1)填写列联表(单位:人)如下:身高达标身高不达标总计经常参加体育锻炼403575不经常参加体育锻炼101525总计5050100(2)零假设为:经常参加体育锻炼与身高达标无关联.由列联表中的数据,.根据的独立性检验,没有充分证据证明不成立,即认为经常参加体育锻炼与身高达标无关联.4.(23-24高二上·贵州黔东南·期末)期末考试后,某校对甲、乙两个文科班的数学成绩进行统计,规定:大于或等于120分的为优秀,120以下的为非优秀.统计结束后,得到如下2×2列联表.已知在甲、乙两个文科班的110人中随机抽取1人为优秀的概率为(1)请完成2×2列联表.优秀非优秀总计甲班10乙班30总计110(2)是否有99.9%的把握认为“成绩优秀与班级有关”0.0500.0100.0013.8416.63510.828【答案】(1)表格见解析(2)没有的把握认为“成绩优秀与班级有关”【分析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论