版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳二中2026届高二数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,,若,,则()A. B.C. D.2.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.3.椭圆与双曲线有公共的焦点、,与在第一象限内交于点,是以线段为底边的等腰三角形,若椭圆的离心率的范围是,则双曲线的离心率取值范围是()A. B.C. D.4.已知集合,从集合A中任取一点P,则点P满足约束条件的概率为()A. B.C. D.5.已知命题,,若是一个充分不必要条件,则的取值范围是()A. B.C. D.6.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.7.已知数列中,,,是的前n项和,则()A. B.C. D.8.执行如图所示的程序框图,则输出S的值是()A. B.C. D.9.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.10.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为111.已知直线,当变化时,所有直线都恒过点()A.B.C.D.12.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数,则_______14.已知三角形OAB顶点,,,则过B点的中线长为______.15.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.16.若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足.(1)求数列的通项公式;(2)设,数列的前项和为,证明:当时,.18.(12分)已知抛物线的焦点与双曲线的右焦点重合,双曲线E的渐近线方程为(1)求抛物线C的标准方程和双曲线E的标准方程;(2)若O是坐标原点,直线与抛物线C交于A,B两点,求的面积19.(12分)在如图所示的几何体中,四边形是正方形,四边形是梯形,,,平面平面,且(1)求证:平面;(2)求平面与平面夹角的余弦值20.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.21.(12分)如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值22.(10分)已知圆,直线的斜率为2,且过点(1)判断与的位置关系;(2)若圆,求圆与圆的公共弦长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B2、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.3、B【解析】求得,可得出,设椭圆和双曲线的离心率分别为、,可得,由可求得的取值范围.【详解】设,设双曲线的实轴长为,因为与在第一象限内交于点,是以线段为底边的等腰三角形,则,由椭圆的定义可得,由双曲线的定义可得,所以,,则,设椭圆和双曲线的离心率分别为、,则,即,因,则,故.故选:B.4、C【解析】根据圆的性质,结合两条直线的位置关系、几何概型计算公式进行求解即可.【详解】,圆心坐标为,半径为,直线互相垂直,且交点为,由圆的性质可知:点P满足约束条件的概率为,故选:C5、A【解析】先化简命题p,q,再根据是的一个充分不必要条件,由q求解.【详解】因为命题,或,又是的一个充分不必要条件,所以,解得,所以的取值范围是,故选:A6、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C7、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.8、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C9、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.10、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D11、D【解析】将直线方程整理为,从而可得直线所过的定点.【详解】可化为,∴直线过定点,故选:D.12、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】先对函数求导,然后令可求出的值【详解】因为,所以,则,解得故答案为:14、【解析】先求出中点坐标,再由距离公式得出过B点的中线长.【详解】由中点坐标公式可得中点,则过B点的中线长为.故答案为:15、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:16、【解析】根据空间向量夹角公式进行求解即可.【详解】设与的夹角为,直线与平面所成角为,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)利用前n项和与的关系即求;(2)由题知,然后利用裂项相消法即证.【小问1详解】由,可得,两式相减可得,当时,,满足,所以.【小问2详解】∵,因为,所以当时,.18、(1);(2)【解析】(1)由双曲线的渐近线方程为,可得,继而得到双曲线的右焦点为,即为抛物线的焦点坐标,可得,即得解;(2)联立直线与抛物线,可得,再由直线过抛物线的焦点,故,三角形的高为O到直线的距离,利用点到直线公式,求解即可【小问1详解】由题意,双曲线渐近线方程为:,所以,所以双曲线E的标准方程为:故双曲线故双曲线的右焦点为,所以,,所以【小问2详解】由题意联立,得,又所以因为直线过抛物线的焦点,所以O到直线的距离,19、(1)证明见解析(2)【解析】(1)先利用正方形和梯形的性质证明线面平行,然后再根据线面平行证明面面平行即可(2)根据题意建立空间直角坐标系,写出相关点的坐标和相关的向量,然后分别求出平面与平面的一个法向量,最后求出平面与平面夹角的余弦值【小问1详解】四边形是正方形,可得:又平面,平面则有:平面四边形是梯形,可得:又平面,平面则有:平面又故平面平面【小问2详解】依题意知两两垂直,故以为原点,所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系.则有:,,,可得:,,设平面的一个法向量,则有:取,可得:设平面的一个法向量,则有:取,可得:设平面与平面的夹角为,则故平面与平面夹角的余弦值为20、(1)证明见解析(2)【解析】(1)接BO,由是等边三角形得,由得出,再利用线面垂直的判断定理可得平面;(2)建立以为坐标原点,分别为轴的空间直角坐标系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小问1详解】连接BO,由已知△ABC是以AC为底的等腰直角三角形,且PA=PB=PC=AC=4,O为AC的中点,则是等边三角形,,,在中,,满足,即是直角三角形,则,又,平面,所以平面.【小问2详解】建立以为坐标原点,分别为轴的空间直角坐标系如图所示,则,,,,则平面的法向量为,由已知,得到点坐标,,设平面的法向量则,令,则,即,设平面MAP与平面CAP所成角为,则,则平面MAP与平面CAP所成角为.21、(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用直线的方向向量,平面的法向量,计算线面角的正弦值.【详解】(1)以为原点建立如图所示空间直角坐标系,则.,,所以,由于,所以平面.(2),,设平面的法向量为,则,令,则,所以.设直线与平面所成角为,则.22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江温州市平阳县兴阳控股集团有限公司下属房开公司招聘项目制员工15人考试参考试题及答案解析
- 2026甘肃能化集团校园招聘183人备考笔试试题及答案解析
- 2025重庆市沙坪坝区歌乐山社区卫生服务中心招聘医师2人备考笔试试题及答案解析
- 深度解析(2026)《GBT 26079-2010梁式吊具》(2026年)深度解析
- 深度解析(2026)《GBT 26023-2010抗射线用高精度钨板》(2026年)深度解析
- 2025西藏拉孜县中心医院招聘紧缺型人才2人备考笔试试题及答案解析
- 吉安市农业农村发展集团有限公司及下属子公司2025年第二批面向社会公开招聘模拟笔试试题及答案解析
- 自贡市自流井区人力资源和社会保障局2025年下半年自流井区事业单位公开选调工作人员(17人)备考考试试题及答案解析
- 2025重庆沪渝创智生物科技有限公司社会招聘5人备考笔试题库及答案解析
- 2025广西钦州市灵山县自然资源局招聘公益性岗位人员1人备考笔试题库及答案解析
- 设计公司生产管理办法
- 企业管理绿色管理制度
- 2025年人工智能训练师(三级)职业技能鉴定理论考试题库(含答案)
- 2025北京八年级(上)期末语文汇编:名著阅读
- 小学美术教育活动设计
- 蜜雪冰城转让店协议合同
- 贷款项目代理协议书范本
- 低分子肝素钠抗凝治疗
- 重庆城市科技学院《电路分析基础》2023-2024学年第二学期期末试卷
- 乳腺癌全程、全方位管理乳腺癌患者依从性及心理健康管理幻灯
- 2024-2025学年福建省三明市高二上册12月月考数学检测试题(附解析)
评论
0/150
提交评论