吉林省吉林市吉化一中2026届高一数学第一学期期末预测试题含解析_第1页
吉林省吉林市吉化一中2026届高一数学第一学期期末预测试题含解析_第2页
吉林省吉林市吉化一中2026届高一数学第一学期期末预测试题含解析_第3页
吉林省吉林市吉化一中2026届高一数学第一学期期末预测试题含解析_第4页
吉林省吉林市吉化一中2026届高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市吉化一中2026届高一数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.2.命题:,,则该命题的否定为()A., B.,C., D.,3.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.44.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则5.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}6.已知函数(且),若函数图象上关于原点对称的点至少有3对,则实数a的取值范围是().A. B.C. D.7.已知函数是定义域为的奇函数,且,当时,,则()A. B.C. D.8.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则10.已知函数是定义在R上的偶函数,且在上是单调递减的,设,,,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为______12.若函数在区间内有最值,则的取值范围为_______13.已知函数,则使函数有零点的实数的取值范围是____________14.函数的定义域为_______________15.若函数,,则_________;当时,方程的所有实数根的和为__________.16.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图,O为线段中点,C为上异于O的一点,以为直径作半圆,过点C作的垂线,交半圆于D,连结,过点C作的垂线,垂足为E.设,则图中线段,线段,线段_______;由该图形可以得出的大小关系为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围18.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.19.解关于的不等式.20.已知全集,,集合(1)求;(2)求21.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.2、B【解析】根据特称命题的否定可得出结论.【详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.3、C【解析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.4、D【解析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【点睛】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.5、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解6、A【解析】由于关于原点对称得函数为,由题意可得,与的图像在的交点至少有3对,结合函数图象,列出满足要求的不等式,即可得出结果.【详解】关于原点对称得函数为所以与的图像在的交点至少有3对,可知,如图所示,当时,,则故实数a的取值范围为故选:A【点睛】本题考查函数的对称性,难点在于将问题转换为与的图像在的交点至少有3对,考查了运算求解能力和逻辑推理能力,属于难题.7、A【解析】由奇偶性结合得出,再结合解析式得出答案.【详解】由函数是定义域为的奇函数,且,,而,则故选:A8、D【解析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【点睛】本题考查了根据三角函数符号判断角所在的象限,属于基础题.9、D【解析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.10、A【解析】先判断出上单调递增,由,即可得到答案.【详解】因为函数是定义在R上的偶函数,所以的图像关于y轴对称,且.又在上是单调递减的,所以在上单调递增.因为,,所以:,所以,即.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【详解】因,则,所以的值为2.故答案为:212、【解析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【点睛】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.13、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.14、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.15、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.16、①.②.【解析】利用射影定理求得,结合图象判断出的大小关系.【详解】在中,由射影定理得,即.在中,由射影定理得,即根据图象可知,即.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在上的单调递增区间为,单调递减区间为,当时,,,当时,,,当时,,,又有两个不同的实数根,则,∴,故a的取值范围为18、(1);(2).【解析】(1)根据给定条件可得,再利用诱导公式化简计算作答.(2)由给定条件求出,再利用和角公式、倍角公式计算作答.【小问1详解】依题意,,所以.【小问2详解】因点的横坐标为,而点在第一象限,则点,即有,于是得,,,,所以.19、答案见解析【解析】不等式等价于,再分,和三种情况讨论解不等式.【详解】原不等式可化为,即,①当,即时,;②当,即时,原不等式的解集为;③当,即时,.综上知:当时,原不等式的解集为;当时,原不等式的解集为;当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论