江西省抚州市临川第二中学2026届数学高二上期末达标检测试题含解析_第1页
江西省抚州市临川第二中学2026届数学高二上期末达标检测试题含解析_第2页
江西省抚州市临川第二中学2026届数学高二上期末达标检测试题含解析_第3页
江西省抚州市临川第二中学2026届数学高二上期末达标检测试题含解析_第4页
江西省抚州市临川第二中学2026届数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川第二中学2026届数学高二上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间内随机取一个数x,则使得的概率为()A. B.C. D.2.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)3.椭圆的左、右焦点分别为、,上存在两点、满足,,则的离心率为()A. B.C. D.4.二项式的展开式中,各项二项式系数的和是()A.2 B.8C.16 D.325.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.6.给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题7.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.8.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.9.若曲线与曲线在公共点处有公共切线,则实数()A. B.C. D.10.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.11.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3C.9 D.1512.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校学生在研究折纸实验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数与纸的长边和厚度有关系:.现有一张长边为30cm,厚度为0.05cm的矩形纸,根据以上信息,当对折完4次时,的最小值为________;该矩形纸最多能对折________次.(参考数值:,)14.若关于的不等式的解集为R,则的取值范围是______.15.在下列三个问题中:①甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,如果规定:同时出现正面或反面算甲胜,一个正面、一个反面算乙胜,那么这个游戏是公平的;②掷一枚骰子,估计事件“出现三点”的概率,当抛掷次数很大时,此事件发生的频率接近其概率;③如果气象预报1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正确的是___________.(用序号表示)16.已知空间直角坐标系中,点,,若,与同向,则向量的坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成的角为,请问在线段上是否存在点,使得二面角的大小为,若存在请求出的位置,不存在请说明理由.18.(12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,广安市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)19.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程20.(12分)已知椭圆C:的左右焦点分别为,,点P是椭圆C上位于第二象限的任一点,直线l是的外角平分线,过左焦点作l的垂线,垂足为N,延长交直线于点M,(其中O为坐标原点),椭圆C的离心率为(1)求椭圆C的标准方程;(2)过右焦点的直线交椭圆C于A,B两点,点T在线段AB上,且,点B关于原点的对称点为R,求面积的取值范围.21.(12分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,22.(10分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.2、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握3、A【解析】作点关于原点的对称点,连接、、、,推导出、、三点共线,利用椭圆的定义可求得、、、,推导出,利用勾股定理可得出关于、的齐次等式,即可求得该椭圆的离心率.【详解】作点关于原点的对称点,连接、、、,则为、的中点,故四边形为平行四边形,故且,则,所以,,故、、三点共线,由椭圆定义,,有,所以,则,再由椭圆定义,有,因为,所以,在中,即,所以,离心率故选:A.4、D【解析】根据给定条件利用二项式系数的性质直接计算作答.【详解】二项式的展开式的各项二项式系数的和是.故选:D5、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.6、D【解析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,,所以说法不正确;D选项:“在中,若,则是锐角三角形”是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题“若,则”的否命题是“若,则”,所以A选项不正确;双曲线的离心率大于,即,解得,则“”是“双曲线的离心率大于”的充分不必要条件,所以B选项不正确;命题“,”的否定是“,”,所以C选项不正确;命题“在中,若,则是锐角三角形”,在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.7、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.8、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C9、A【解析】设公共点为,根据导数的几何意义可得出关于、的方程组,即可解得实数、的值.【详解】设公共点为,的导数为,曲线在处的切线斜率,的导数为,曲线在处的切线斜率,因为两曲线在公共点处有公共切线,所以,且,,所以,即解得,所以,解得,故选:A10、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A11、C【解析】y′=3x2,则y′|x=1=3,所以曲线在P点处的切线方程为y-12=3(x-1)即y=3x+9,它在y轴上的截距为9.12、A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.64②.6【解析】利用即可求解,利用和换底公式进行求解.【详解】令,则,则,即,即当对折完4次时,最小值为;由题意,得,,则,所以该矩形纸最多能对折6次.故答案为:64,6.14、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:15、①②【解析】以甲乙获胜概率是否均为来判断游戏是否公平,并以此来判断①的正确性;以频率和概率的关系来判断②③的正确性.【详解】①中:甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,可得4种可能的结果:(正,正),(正,反),(反,正),(反,反)则“同时出现正面或反面”的概率为,“一个正面、一个反面”的概率为即甲乙二人获胜的概率均为,那么这个游戏是公平的.判断正确;②中:“掷一枚骰子出现三点”是一个随机事件,当抛掷次数很大时,此事件发生的频率会稳定于其概率值,故此事件发生的频率接近其概率.判断正确;③中:气象预报1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出现下雨的天数是随机的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判断错误.故答案为:①②16、【解析】求出坐标,根据给条件表示出坐标,利用向量模的坐标表示计算作答.【详解】因,,则,因与同向,则设,因此,,于是得,解得,则,所以向量的坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在,点E为线段中点【解析】(1)通过作辅助线结合面面垂直的性质证明侧面,从而证明结论;(2)建立空间直角坐标系,求出相关点的坐标,再求相关的向量坐标,求平面的法向量,利用向量的夹角公式求得答案.【小问1详解】证明:连接交于点,因,则由平面侧面,且平面侧面,得平面,又平面,所以三棱柱是直三棱柱,则底面ABC,所以.又,从而侧面,又侧面,故.【小问2详解】由(1).平面,则直线与平面所成的角,所以,又,所以假设在线段上是否存在一点E,使得二面角的大小为,由是直三棱柱,所以以点A为原点,以AC、所在直线分别为x,z轴,以过A点和AC垂直的直线为y轴,建立空间直角坐标系,如图所示,则,且设,,得所以,设平面的一个法向量,由,得:,取,由(1)知平面,所以平面的一个法向量,所以,解得,∴点E为线段中点时,二面角的大小为.18、(1)(2)众数;中位数【解析】(1)根据频率分布直方图矩形面积和为1列式即可;(2)根据众数即最高矩形中间值,中位数左右两边矩形面积各为0.5列式即可.【小问1详解】由,得【小问2详解】50名学生竞赛成绩的众数为设中位数为,则解得所以这50名学生竞赛成绩的中位数为76.419、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.20、(1)(2)【解析】(1)根据题意可得到的值,结合椭圆的离心率,即可求得b,求得答案;(2)由可得,进一步推得,于是设直线方程和椭圆方程联立,利用根与系数的关系,求得弦长,表示出三角形AOB的面积,利用换元法结合二次函数的性质求其范围.【小问1详解】由题意可知:为的中点,为的中点,为的中位线,,,又,故,即,,又,,,椭圆的标准方程为;【小问2详解】由题意可知,,,①当过的直线与轴垂直时,,,②当过的直线不与轴垂直时,可设,,直线方程为,联立,可得:.,,,由弦长公式可知,到距离为,故,令,则原式变为,令,原式变为当时,故,由①②可知.【点睛】本题考查了椭圆方程的求解,以及直线和椭圆相交时的三角形的面积问题,考查学生的计算能力和数学素养,解答的关键是计算三角形面积时要理清运算的思路,准确

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论