版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市龙海程溪中学2026届高二上数学期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形2.知点分别为圆上的动.点,为轴上一点,则的最小值()A. B.C. D.3.函数在区间上的最小值是()A. B.C. D.4.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.5.已知数列满足,若.则的值是()A. B.C. D.6.等差数列前项和,已知,,则的值是().A. B.C. D.7.函数的图像大致是()A B.C. D.8.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数9.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.10.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.311.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.12.若直线的斜率为,则的倾斜角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.14.已知F1,F2是双曲线C:﹣y2=1(a>0)的左、右焦点,点P是双曲线C上的任意一点(不是顶点),过F1作∠F1PF2的角平分线的垂线,垂足为H,O是坐标原点.若|F1F2|=6|OH|,则双曲线C的方程为____15.已知函数有零点,则的取值范围是___________.16.已知拋物线的焦点为F,O为坐标原点,M的准线为l且与x轴相交于点B,A为M上的一点,直线AO与直线l相交于C点,若,,则M的标准方程为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围18.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.19.(12分)已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程20.(12分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;21.(12分)已知动点M到定点和的距离之和为4(1)求动点轨迹的方程;(2)若直线交椭圆于两个不同的点A,B,O是坐标原点,求的面积22.(10分)已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B2、B【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为1,∴若与关于x轴对称,则,即,当三点不共线时,当三点共线时,所以同理(当且仅当时取得等号)所以当三点共线时,当三点不共线时,所以∴的最小值为圆与圆的圆心距减去两个圆的半径和,∴.故选:B.3、B【解析】求出导函数,确定函数的单调性,得极值,并求出端点处函数值比较后可得最小值【详解】解:因为,于是函数在上单调递增,在上单调递减,,,得函数在区间上的最小值是故选:B4、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D5、D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D6、C【解析】由题意,设等差数列的公差为,则,故,故,故选7、B【解析】由函数有两个零点排除选项A,C;再借助导数探讨函数的单调性与极值情况即可判断作答.【详解】由得,或,选项A,C不满足;由求导得,当或时,,当时,,于是得在和上都单调递增,在上单调递减,在处取极大值,在处取极小值,D不满足,B满足.故选:B8、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题9、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.10、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C11、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B12、C【解析】设直线l倾斜角为,根据题意得到,即可求解.【详解】设直线l的倾斜角为,因为直线的斜率是,可得,又因为,所以,即直线的倾斜角为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:14、8x2﹣y2=1【解析】延长F1H与PF2,交于K,连接OH,由三角形的中位线定理和双曲线的定义、垂直平分线的性质,结合双曲线的a,b,c的关系,可得双曲线方程【详解】解:延长F1H与PF2,交于K,连接OH,由题意可得PH为边KF1的垂直平分线,则|PF1|=|PK|,且H为KF1的中点,|OH|=|KF2|,由双曲线的定义可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,则|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又双曲线C:﹣y2=1,知b=1,所以a=,所以双曲线的方程为8x2﹣y2=1故答案为:8x2﹣y2=115、【解析】利用导数可求得函数的最小值,要使函数有零点,只要,求得函数的最小值,即可得解.【详解】解:,当时,,当时,,所以在上递减,在上递增,所以,因为函数有零点,所以,解得.故答案为:.16、【解析】先利用相似关系计算,求得直线OA的方程,再联立方程求得,利用抛物线定义根据即得p值,即得结果.【详解】因为,,所以,则,如图,,故,解得,所以,直线OA的斜率为,OA的方程,联立直线OA与抛物线方程,解得,所以,故,则抛物线标准方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)递减区间是,单调递增区间是,极小值(2)证明见解析(3)【解析】(1)对函数进行求导通分化简,求出解得,在列出与在区间上的表格,即可得到答案.(2)由(1)知,在区间上的最小值为,因为存在零点,所以,从而.在对进行分类讨论,再利用函数的单调性得出结论.(3)构造函数,在对进行求导,在对进行分情况讨论,即可得的得到答案.【小问1详解】函数的定义域为,,由解得与在区间上的情况如下:–↘↗所以,的单调递减区间是,单调递增区间是;在处取得极小值,无极大值【小问2详解】由(1)知,在区间上的最小值为因为存在零点,所以,从而当时,在区间上单调递减,且,所以是在区间上的唯一零点当时,在区间上单调递减,且,所以在区间上仅有一个零点综上可知,若存在零点,则在区间上仅有一个零点【小问3详解】设,①若,则,符合题意②若,则,故当时,,在上单调递增所以,存在,使得的充要条件为,解得③若,则,故当时,;当时,在上单调递减,在上单调递增所以,存在,使得的充要条件为,而,所以不合题意综上,的取值范围是【点睛】本题考查求函数的单调区间和极值、证明给定区间只有一个零点问题,以及含参存在问题,属于难题.18、(1)证明见解析(2)【解析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.19、(1)(2)【解析】(1)根据抛物线的定义或者直接列式化简即可求出;(2)方法一:设切线的方程为:,与抛物线方程联立,由即可求出的值,从而得出点的坐标,即可求出直线方程【小问1详解】设M(x,y),则解得.所以该抛物线的方程为【小问2详解】[方法一]:依题意,切线的斜率存在,设切线的方程为:,与抛物线方程联立,得,令,得或.从而或,解得或,所以切点A(-1,),B(2,2),直线AB的斜率为,所以直线AB的方程为,整理得.[方法二]:由可得,所以,设切点为(),则切线的斜率,又切线过点P(,-1),所以,整理得,解得或,所以切点的坐标为A(-1,),B(2,2),所以直线AB的斜率为,所以直线AB的方程为,整理得20、(1)(2)【解析】(1)根据抛物线过点,且,利用抛物线的定义求解;(2)设,联立,根据,由,结合韦达定理求解.【小问1详解】解:由抛物线过点,且,得所以抛物线方程为;【小问2详解】设,联立得,,,,则,,即,解得或,又当时,直线与抛物线的交点中有一点与原点重合,不符合题意,故舍去;所以实数的值为.21、(1);(2).【解析】(1)利用椭圆的定义即求;(2)由直线方程与椭圆方程联立,可解得点,再利用三角形面积公式即求.【小问1详解】∵动点M到定点和的距离之和为4,∴动点M的轨迹是以和为焦点的椭圆,可设方程为,则,故动点轨迹的方程为;【小问2详解】由可得,∴或,∴,又O是坐标原点,∴的面积为.22、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上饶市城控集团2025年度一线工作人员公开招聘考试考场变更备考笔试题库及答案解析
- 2025年张家港市中医医院自主招聘定额待遇卫技人员备考题库及答案详解一套
- 2025年岑溪市公开招聘专任教师备考题库及参考答案详解一套
- 2025四川港荣数字科技有限公司第一批项目制员工招聘3人备考核心题库及答案解析
- 2025年烟台交通集团有限公司管理培训生招聘备考题库及1套完整答案详解
- 湖北省孝感市事业单位2026年度人才引进秋季校园招聘879人备考题库及参考答案详解一套
- 2025年晋江市体育中心公开招聘编外人员的备考题库及1套完整答案详解
- 苏州市相城区2026年第一批公开招聘编外人员备考题库及答案详解1套
- 2025辽宁沈阳汽车集团有限公司招聘1人考试核心试题及答案解析
- 防雷检测服务合同
- 药店食品安全管理制度目录
- EVA福音战士-国际动漫课件
- GB/T 37563-2019压力型水电解制氢系统安全要求
- GB/T 25085.3-2020道路车辆汽车电缆第3部分:交流30 V或直流60 V单芯铜导体电缆的尺寸和要求
- GB/T 1182-2018产品几何技术规范(GPS)几何公差形状、方向、位置和跳动公差标注
- DB37-T 5041-2015 城镇供水水质应急监测技术规范
- 帆船运动简介课件
- 3章-信息系统质量管理课件
- 临床营养科工作流程
- 解读2022年烈士纪念日PPT
- 2023常州市九年级英语新课结束测试卷
评论
0/150
提交评论