版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省铁力市第一中学2026届高一数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象的一个对称中心为()A. B.C. D.2.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.3.已知为两条直线,为两个不同的平面,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则4.已知幂函数的图象过(4,2)点,则A. B.C. D.5.函数的单调减区间为()A. B.C. D.6.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.7.已知全集,集合,或,则()A. B.或C. D.8.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.9.已知函数,若关于x的方程有五个不同实根,则m的值是()A.0或 B.C.0 D.不存在10.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______12.设,则________13.函数的零点是___________.14.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)15.函数在______单调递增(填写一个满足条件的区间)16.计算_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,在区间上有最大值4,最小值1,设(1)求的值;(2)不等式在上恒成立,求实数的取值范围;(3)方程有三个不同的实数解,求实数k的取值范围18.已知二次函数)满足,且.(1)求函数的解析式;(2)令,求函数在∈[0,2]上的最小值19.已知函数(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合20.已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.21.已知函数.(1)若不等式的解集为,求不等式的解集;(2)若,求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心【详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为故选C【点睛】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解析】由题意得:或,故选C.考点:直线平行的充要条件3、D【解析】A中,有可能,故A错误;B中,显然可能与斜交,故B错误;C中,有可能,故C错误;D中,由得,,又所以,故D正确.4、D【解析】设函数式为,代入点(4,2)得考点:幂函数5、A【解析】求出的范围,函数的单调减区间为的增区间,即可得到答案.【详解】由可得或函数的单调减区间为的增区间故选:A6、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象7、D【解析】根据交集和补集的定义即可得出答案.【详解】解:因为,或,所以,所以.故选:D8、A【解析】由图观察出和后代入最高点,利用可得,进而得到解析式【详解】解:由图可知:,,,,代入点,得,,,,,,故选.【点睛】本题考查了由的部分图象确定其表达式,属基础题.9、C【解析】令,做出的图像,根据图像确定至多存在两个的值,使得与有五个交点时,的值或取值范围,进而转为求方程在的值或取值范围有解,利用一元二次方程根的分布,即可求解.【详解】做出图像如下图所示:令,方程,为,当时,方程没有实数解,当或时,方程有2个实数解,当,方程有4个实数解,当时,方程有3个解,要使方程方程有五个实根,则方程有一根为1,另一根为0或大于1,当时,有或,当时,,或,满足题意,当时,,或,不合题意,所以.故选:C.【点睛】本题考查复合方程的解,换元法是解题的关键,数形结合是解题的依赖,或直接用选项中的值代入验证,属于较难题.10、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为12、【解析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【详解】解:因为,所以,所以故答案为:113、和【解析】令y=0,直接解出零点.【详解】令y=0,即,解得:和故答案为:和【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解14、①④【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键15、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)16、【解析】将所给式子通分后进行三角变换可得结果【详解】由题意得故答案为:【点睛】易错点睛:本题考查三角恒等化简,本题的关键是通分后用正弦的差角公式,在由化成时注意角的顺序,这是容易出错的地方,考查运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据题意,结合二次函数的图象与性质,列出方程组,即可求解;(2)由题意得到,根据转化为在上恒成立,结合二次函数的性质,即可求解;(3)化简得到,令,得到,根据题意转化为方程有两个根且,结合二次函数的性质,即可求解.【详解】(1)由题意,函数,可得对称轴为,当时,在上为增函数,可得,即,解得;当时,在上为减函数,可得,即,解得,因为,所以.(2)由(1)可得,所以,方程化为,所以,令,则,因为,可得,令,当时,可得,所以,即实数的取值范围是.(3)方程,可化为,可得且,令,则方程化为,方程有三个不同的实数解,所以由的图象知,方程有两个根且,记,则或,解得,综上所述,实数的取值范围是.18、(1),(2)【解析】(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案试题解析:(1)设二次函数一般式(),代入条件化简,根据恒等条件得,,解得,,再根据,求.(2)①根据二次函数对称轴必在定义区间外得实数的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法.试题解析:(1)设二次函数(),则∴,,∴,又,∴.∴(2)①∵∴.又在上是单调函数,∴对称轴在区间的左侧或右侧,∴或②,,对称轴,当时,;当时,;当时,综上所述,19、(I)(II)【解析】该题属于三角函数的综合问题,在解题的过程中,第一问需要先化简函数解析式,在化简的过程中,应用正余弦的差角公式,化简后利用,从而求得,根据是第一象限角,从而确定出,利用倍角公式建立起所满足的等量关系式,从而求得结果,第二问将相应的函数解析式代入不等式,化简后得到,结合正弦函数的性质,可以求得结果试题解析:(1),求得,根据是第一象限角,所以,且;(2)考点:正余弦差角公式,辅助角公式,同角三角函数关系式,倍角公式,三角不等式20、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.21、(1)或(2)答案见解析【解析】(1)由已知得,4是方程的两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同审核员工作考核标准及方法
- 物流企业人力资源经理面试题及解析
- 2025浙江杭州技术转移转化中心招聘参考笔试题库附答案解析
- 梓潼县2025年下半年公开考核招聘卫生专业技术人员(26人)参考考试试题及答案解析
- 人防工程投资预算分析
- 321事故安全生产警示讲解
- 化妆品公司市场部经理面试常见问题与答案
- 2025西安鄠邑区秦渡中心卫生院牛东分院招聘参考笔试题库附答案解析
- 风光制氢醇一体化项目风险评估报告
- 软件架构师面试题及分布式系统设计含答案
- 卫生院对村卫生室基本公卫资金分配方案
- 内科常见疾病护理要点详解
- 工程接管合同协议书
- 2025年PMP项目管理专业人士资格考试模拟试卷及答案
- H2受体拮抗剂:临床定位与合理应用
- 农夫山泉人事管理
- 2026-2031年中国西北菜行业发展分析及投资风险预测研究报告
- 装修工程可行性研究报告(完整)
- 己糖胺途径调控机制-洞察及研究
- 医院培训课件:《基层高血压管理指南-高血压药物治疗方案》
- 哈希nitratax sc硝氮分析仪操作手册
评论
0/150
提交评论