版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省佳木斯市汤原县高级中学2026届数学高一上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,则中元素的个数是()A. B.C. D.2.下列函数中,既是奇函数又在定义域上是增函数是()A. B.C. D.3.已知函数在上有两个零点,则的取值范围为()A. B.C. D.4.函数的单调递增区间是()A. B.C. D.5.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形6.为了得到函数的图象,可以将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.定义在上的偶函数的图象关于直线对称,当时,.若方程且根的个数大于3,则实数的取值范围为()A. B.C. D.8.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.39.已知直线,若,则的值为()A.8 B.2C. D.-210.下列关系式中,正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)12.下列说法中,所有正确说法的序号是_____终边落在轴上的角的集合是;
函数图象与轴的一个交点是;函数在第一象限是增函数;若,则13.若函数关于对称,则常数的最大负值为________14.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.15.在正方形ABCD中,E是线段CD的中点,若,则________.16.已知向量,,若,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.18.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.19.已知,且是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求的值;(2)化简求值:.20.已知函数的图象在直线的下方且无限接近直线.(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;(2)判断函数的奇偶性并用定义证明;(3)求函数的值域.21.已知函数.(1)当时,求方程的解;(2)若,不等式恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据并集的定义进行求解即可.【详解】由题意得,,显然中元素的个数是5.故选:B2、D【解析】根据基本初等函数的单调性以及单调性的性质、函数奇偶性的定义逐一判断四个选项【详解】对于A:为偶函数,在定义域上不是增函数,故A不正确;对于B:为奇函数,在上单调递增,但在定义域上不是增函数,故B不正确;对于C:既不是奇函数也不是偶函数,故C不正确;对于D:,所以是奇函数,因为是上的增函数,故D正确;故选:D3、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.4、B【解析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键5、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B6、A【解析】,设,,令,把函数的图象向右平移个单位得到函数的图象.选A.7、D【解析】由题设,可得解析式且为周期为4的函数,再将问题转化为与交点个数大于3个,讨论参数a判断交点个数,进而画出和的图象,应用数形结合法有符合题设,即可求范围.【详解】由题设,,即,所以是周期为4的函数,若,则,故,所以,要使且根的个数大于3,即与交点个数大于3个,又恒过,当时,在上,在上且在上递减,此时与只有一个交点,所以.综上,、的图象如下所示,要使交点个数大于3个,则,可得.故选:D【点睛】关键点点睛:根据已知条件分析出的周期性,并求出上的解析式,将问题转化为两个函数的交点个数问题,结合对数函数的性质分析a的范围,最后根据交点个数情况,应用数形结合进一步缩小参数的范围.8、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题9、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.10、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、,答案不唯一【解析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)12、【解析】取值验证可判断;直接验证可判断;根据第一象限的概念可判断;由诱导公式化简可判断.【详解】中,取时,的终边在x轴上,故错误;中,当时,,故正确;中,第一象限角的集合为,显然在该范围内函数不单调;中,因为,所以,所以,故正确.故答案为:②④13、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:14、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%15、【解析】详解】由图可知,,所以))所以,故,即,即得16、【解析】因为,,,所以,解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、选择见解析;(1);(2)单调递减区间为.【解析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函数在上的单调递减区间为.【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式
函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.
对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sint的性质18、(1)(2)最大值为,最小值为【解析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.19、(1)答案不唯一,具体见解析(2)【解析】(1)考虑为第三象限或第四象限角两种情况,根据同角三角函数关系计算得到答案.(2)化简得到原式,代入数据计算得到答案.【详解】(1)因为,所以为第三象限或第四象限角;若选③,;若选④,;(2)原式.【点睛】本题考查了同角三角函数关系,诱导公式化简,意在考查学生的计算能力和转化能力.20、(1)函数在上单调递增,(2)奇函数,证明见解析(3)【解析】(1)根据函数的单调性情况直接判断;(2)根据奇偶性的定义直接判断;(3)由奇偶性直接判断值域.【小问1详解】因为随着增大,减小,即增大,故随增大而增大,所以函数在上单调递增.由的图象在直线下方,且无限接近直线,得,所以函数的解析式.【小问2详解】由(1)得,整理得,函数定义域关于原点对称,,所以函数是奇函数.小问3详解】方法一:由(1)知,由(2)知,函数图象关于原点中心对称,故,所以函数的值域为.方法二:由,得,得,得,得,得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江苏航运职业技术学院单招职业技能测试题库及完整答案详解1套
- 2026年三亚市单招职业倾向性测试题库及参考答案详解一套
- 2026年福州软件职业技术学院单招综合素质考试题库含答案详解
- 2026年石家庄幼儿师范高等专科学校单招职业适应性测试题库附答案详解
- 2026年天津职业技术师范大学单招职业适应性测试题库及完整答案详解1套
- 医院药房面试题目及答案
- 安徽铁路面试题及答案
- 泰安护理面试题及答案
- 赣南师范大学科技学院2026年公开招聘工作人员备考题库(一)完整参考答案详解
- 2025年扬州大学公开招聘教学科研和医务人员175 人备考题库(第二批)完整参考答案详解
- 铜的介绍教学课件
- 2024年云南省楚雄市数学七上期末经典试题含解析
- 重症超声诊疗规范
- 系统思维与系统决策系统动力学知到智慧树期末考试答案题库2025年中央财经大学
- 【课件】共筑保密防线 公民人人有责 课件-2024-2025学年下学期全国保密宣传教育月主题班会
- 生物实验室专用实验动物饲养场地租赁合同
- GB/T 4447-2025船舶与海洋技术海船起锚机和起锚绞盘
- 广告标识牌、宣传品、物料设计、制作方案投标文件(技术方案)
- 急诊科护理持续质量改进
- 解直角三角形的实际应用(8种题型)-2025年中考数学一轮复习(原卷版)
- 糖尿病足的护理及预防
评论
0/150
提交评论