贵州省遵义市凤冈县二中2026届数学高二上期末统考模拟试题含解析_第1页
贵州省遵义市凤冈县二中2026届数学高二上期末统考模拟试题含解析_第2页
贵州省遵义市凤冈县二中2026届数学高二上期末统考模拟试题含解析_第3页
贵州省遵义市凤冈县二中2026届数学高二上期末统考模拟试题含解析_第4页
贵州省遵义市凤冈县二中2026届数学高二上期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义市凤冈县二中2026届数学高二上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知关于的不等式的解集是,则的值是()A B.5C. D.72.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.3.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.4.已知函数,若在处取得极值,且恒成立,则实数的最大值为()A. B.C. D.5.已知中,角,,的对边分别为,,,且,,成等比数列,则这个三角形的形状是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.钝角三角形6.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列7.直线经过两点,那么其斜率为()A. B.C. D.8.命题:“,”的否定形式为()A., B.,C., D.,9.已知圆O的半径为5,,过点P的2021条弦的长度组成一个等差数列,最短弦长为,最长弦长为,则其公差为()A. B.C. D.10.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.11.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.12.如图,在四面体中,,,,点为的中点,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若存在唯一零点,则的取值范围是__________.14.已知数列是公差不为零的等差数列,,,成等比数列,第1,2项与第10,11项的和为68,则数列的通项公式是________.15.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为________.16.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求甲乙各投球一次,比赛结束的概率;(2)求甲获胜的概率18.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)19.(12分)已知函数,.(1)讨论的单调性;(2)当时,记在区间的最大值为M,最小值为N,求的取值范围.20.(12分)如图,已知直三棱柱中,,,E,F分别为AC和的中点,D为棱上的一点.(1)证明:;(2)当平面DEF与平面所成的锐二面角的余弦值为时,求点B到平面DFE距离.21.(12分)求下列函数的导数.(1);(2).22.(10分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D2、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D3、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.4、D【解析】根据已知在处取得极值,可得,将在恒成立,转化为,只需求,求出最小值即可得答案【详解】解:,,由在处取得极值,得,解得,所以,,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在处取得极小值,,恒成立,转化为,令,,则,,令得,当时,,此时函数单调递减,当时,,此时函数单调递增,所以,即得,故选:D5、B【解析】根据题意求出,结合余弦定理分情况讨论即可.【详解】解:因为,所以.由题意得,利用余弦定理得:.当,即时,,即,解得:.此时三角形为等边三角形;当,即时,,不成立.所以三角形的形状是等边三角形.故选:B.【点睛】本题主要考查利用余弦定理判断三角形的形状,属于基础题.6、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.7、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B8、D【解析】根据含一个量词的命题的否定方法直接得到结果.【详解】因为全称命题的否定是特称命题,所以命题:“,”的否定形式为:,,故选:D.【点睛】本题考查全称命题的否定,难度容易.含一个量词的命题的否定方法:修改量词,否定结论.9、B【解析】可得过点P的最长弦长为直径,最短弦长为过点P的与垂直的弦,分别求出即可得出公差.【详解】可得过点P的最长弦长为直径,,最短弦长为过点P的与垂直的弦,,公差.故选:B.10、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.11、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A12、B【解析】利用插点的方法,将归结到题目中基向量中去,注意中线向量的运用.【详解】.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得函数的导数,得到是的唯一零点,转化为方程无实数根或只存在实数根,进而转化为和的图象至多有一个交点(且如果有交点,交点必须在处),利用导数求得函数的单调性和最小值,即可求解.【详解】由题意,函数,可得,因为存在唯一零点,所以是的唯一零点,则关于的方程无实数根或只存在实数根,所以函数和的图象至多有一个交点(且如果有交点,交点必须在处),又由,当时,,单调递减;当时,,单调递增,所以,所以,即即的取值范围是.故答案为:.14、【解析】利用基本量结合已知列方程组求解即可.【详解】设等差数列的公差为由题可知即因为,所以解得:所以.故答案为:15、1560【解析】先把6名技术人员分成4组,每组至少一人,有两种情况:(1)4个组的人数按3,1,1,1分配,(2)4个组的人数为2,2,1,1,求出所有的分组方法,然后再把4个组的人分给4个分厂,从而可求得答案【详解】先把6名技术人员分成4组,每组至少一人.(1)若4个组的人数按3,1,1,1分配,则不同的分配方案有(种).(2)若4个组的人数为2,2,1,1,则不同的分配方案有(种).故所有分组方法共有20+45=65(种).再把4个组的人分给4个分厂,不同的方法有(种).故答案为:156016、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设事件“甲在第次投篮投中”,设事件“乙在第次投篮投中”,记“甲乙各投球一次,比赛结束”为事件,则,利用独立事件和互斥事件的概率公式,即得解(2)记“甲获胜”为事件,由题意,根据概率的加法公式和独立事件的概率公式,即得解【小问1详解】设事件“甲在第次投篮投中”,其中设事件“乙在第次投篮投中”,其中则,,其中记“甲乙各投球一次,比赛结束”为事件,,事件与事件相互独立根据事件独立性定义得:甲乙各投球一次,比赛结束的概率为【小问2详解】记“甲获胜”为事件,事件、事件、事件彼此互斥根据概率加法公式和事件独立性定义得:甲获胜的概率为18、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;19、(1)答案见解析;(2).【解析】(1)求得,对参数进行分类讨论,根据导函数函数值的正负即可判断的单调性;(2)根据(1)中所求,求得,以及,再求其取值范围即可.【小问1详解】因为,故可得,令,可得或;当时,,此时在上单调递增;当时,当时,,单调递增;当时,,单调递减;当时,,单调递增;当时,当时,,单调递增;当时,,单调递减;当时,,单调递增.综上所述:当时,在上单调递增;当时,和单调递增,在单调递减;当时,在和单调递增,在单调递减.【小问2详解】由(1)可知:当时,在单调递减,在单调递增又,,故在单调递减,在单调递增.则的最小值;又,当时,的最大值,此时;当时,的最大值,此时,令,则,所以在上单调递减,所以,所以;所以的取值范围为.20、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用向量法证得.(2)利用平面DEF与平面所成的锐二面角的余弦值列方程,求得,结合向量法求得到平面的距离.【小问1详解】以B为坐标原点,为x轴正方向建立如图所示的建立空间直角坐标系.设,可得,,,.,.因为,所以.【小问2详解】,设为平面DEF的法向量,则,即,可取.因为平面的法向量为,所以.由题设,可得,所以.点B到DFE平面距离.21、(1);(2).【解析】利用导数的乘除法则,对题设函数求导即可.【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论