2026届山西省怀仁第一中学数学高二上期末质量跟踪监视模拟试题含解析_第1页
2026届山西省怀仁第一中学数学高二上期末质量跟踪监视模拟试题含解析_第2页
2026届山西省怀仁第一中学数学高二上期末质量跟踪监视模拟试题含解析_第3页
2026届山西省怀仁第一中学数学高二上期末质量跟踪监视模拟试题含解析_第4页
2026届山西省怀仁第一中学数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省怀仁第一中学数学高二上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.2.已知点,Q是圆上的动点,则线段长的最小值为()A.3 B.4C.5 D.63.等差数列中,是的前项和,,则()A.40 B.45C.50 D.554.若直线a不平行于平面,则下列结论正确的是()A.内的所有直线均与直线a异面 B.直线a与平面有公共点C.内不存在与a平行的直线 D.内的直线均与a相交5.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离6.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120 B.84C.56 D.287.在等差数列中,,则等于A.2 B.18C.4 D.98.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.20229.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.110.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.11.下列数列是递增数列的是()A. B.C. D.12.已知数列的前n项和为,,,则=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则其通项公式________14.已知双曲线:的左、右焦点分别为,,为的右支上一点,且,则的离心率为___________.15.已知直线与直线垂直,则实数的值为___________.16.已知函数(1)求函数的单调区间;(2)设上存在极大值M,证明:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙等6个班级参加学校组织广播操比赛,若采用抽签的方式随机确定各班级的出场顺序(序号为1,2,…,6),求:(1)甲、乙两班级的出场序号中至少有一个为奇数的概率;(2)甲、乙两班级之间的演出班级(不含甲乙)个数X的分布列与期望18.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0的交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程19.(12分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.20.(12分)一项“过关游戏”规则规定:在第关要抛掷一颗正六面体骰子次,每次掷得的点数均相互独立,如果这次抛掷所出现的点数之和大于,则算过关.(1)这个游戏最多过几关?(2)某人连过前两关的概率是?(3)某人连过前三关的概率是?21.(12分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;22.(10分)已知圆C的圆心在直线上,且圆C经过,两点.(1)求圆C的标准方程.(2)设直线与圆C交于A,B(异于坐标原点O)两点,若以AB为直径的圆过原点,试问直线l是否过定点?若是,求出定点坐标;若否,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.2、A【解析】根据圆的几何性质转化为圆心与点的距离加上半径即可得解.【详解】圆的圆心为,半径为,所以,圆上点在线段上时,,故选:A3、B【解析】应用等差数列的性质“若,则”即可求解【详解】故选:B4、B【解析】根据题意可得直线a与平面相交或在平面内,结合线面的位置关系依次判断选项即可.【详解】若直线a不平行与平面,则直线a与平面相交或在平面内.A:内的所有直线均与直线a异面错误,也可能相交,故A错误;B:直线a与平面相交或直线a在平面内都有公共点,故B正确;C:平面内不存在与a平行的直线,错误,当直线a在平面内就存在与a平行的直线,故C错误;D:平面内的直线均与a相交,错误,也可能异面,故D错误.故选:B5、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.6、B【解析】按照框图中程序,逐步执行循环,即可求得答案.【详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B7、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.8、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A9、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.10、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D11、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.12、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用累加法即可求出数列的通项公式.【详解】因为,所以,所以,,,…,,把以上个式子相加,得,即,所以.故答案为:.14、【解析】由双曲线定义可得a,代入点P坐标可得b,然后可解.【详解】由题知,故,又点在双曲线上,所以,解得,所以.故答案为:15、【解析】由直线垂直的充要条件列式计算即可得答案.【详解】解:因为直线与直线垂直,所以,解得故答案为:16、(1)在单调递增,单调递减;(2)详见解析.【解析】(1)求得,利用和即可求得函数的单调性区间;(2)求得函数的解析式,求,对的情况进行分类讨论得到函数有极大值的情形,再结合极大值点的定义进行替换、即可求解.【详解】(1)由题意,函数,则,当时,令,所以函数单调递增;当时,令,即,解得或,令,即,解得,所以函数在区间上单调递增,在区间中单调递减,当时,令,即,解得或,令,即,解得,所以函数在单调递增,在单调递减.(2)由函数,则,令,可得令,解得,当时.,函数在单调递增,此时,所以,函数在上单调递增,此时不存在极大值,当时,令解得,令,解得,所以上单调递减,在上单调递增,因为在上存在极大值,所以,解得,因为,易证明,存在时,,存在使得,当在区间上单调递增,在区间单调递减,所以当时,函数取得极大值,即,,由,所以【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)X01234p期望为.【解析】(1)求出甲、乙两班级的出场序号中均为偶数的概率,进而求出答案;(2)求出X的可能取值及相应的概率,写出分布列,求出期望值.【小问1详解】由题意得:甲、乙两班级的出场序号中均为偶数的概率为,故甲、乙两班级的出场序号中至少有一个为奇数的概率;【小问2详解】X的可能取值为0,1,2,3,4,,,,故分布列为:X01234p数学期望为18、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.19、(1)(2)过定点,定点为【解析】(1)根据离心率及顶点坐标求出即可得椭圆方程;(2)当直线斜率存在时,设直线的方程为(),求出的坐标,设是以为直径的圆上的点,利用向量垂直可得恒成立,可得定点,斜率不存在时验证即可.【小问1详解】由题意得,,,又因为,所以.所以椭圆C的方程为.【小问2详解】以为直径的圆过定点.理由如下:当直线斜率存在时,设直线的方程为().令,得,所以.由得,则或,所以.设是以为直径的圆上的任意一点,则,.由题意,,则以为直径的圆的方程为.即恒成立即解得故以为直径的圆恒过定点.当直线斜率不存在时,以为直径的圆也过点.综上,以为直径的圆恒过定点.20、(1)关(2)(3)【解析】(1)由题意,可判断时,,当,所以可判断出最多只能过关;(2)记一次抛掷所出现的点数之和大于为事件,两次抛掷所出现的点数之和大于为事件,得基本事件的总数以及满足题意的基本事件的个数,计算出,,从而根据概率相乘求解得连过前两关的概率;(3)设前两次和为,第三次点数为,列出第三关过关的基本事件的个数,利用概率相乘即可得连过前三关的概率.【小问1详解】因为骰子出现的点数最大为,当时,,而,所以时,这次抛掷所出现的点数之和均小于,所以最多只能过关.【小问2详解】记一次抛掷所出现的点数之和大于为事件,基本事件总数为个,符合题意的点数为,共个,所以;记两次抛掷所出现的点数之和大于为事件,基本事件总数为个,不符合题意的点数为,共个,则由对立事件的概率得,所以连过前两关的概率为;【小问3详解】前两次和为,第三次点数为则考虑再考虑2种3种4种5种6种5种4种3种2种1种所以满足共有因此某人连过前三关的概率是.21、(1)(2)【解析】(1)根据抛物线过点,且,利用抛物线的定义求解;(2)设,联立,根据,由,结合韦达定理求解.【小问1详解】解:由抛物线过点,且,得所以抛物线方程为;【小问2详解】设,联立得,,,,则,,即,解得或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论