版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省普宁市华美学校2026届数学高二上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定2.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题3.已知,条件,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图,在正方体中,()A. B.C. D.5.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线6.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.7.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件8.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.9.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.10.设函数在上可导,则等于()A. B.C. D.以上都不对11.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.612.曲线在点处的切线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下列命题:①若,则;②“在中,若,则”逆命题是真命题;③命题“,”的否定是“,”;④“若,则”的否命题为“若,则”.则其中正确的是______.14.直线的一个法向量________.15.已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______16.等比数列中,,,则数列的公比为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知斜率为1的直线交抛物线:()于,两点,且弦中点的纵坐标为2.(1)求抛物线的标准方程;(2)记点,过点作两条直线,分别交抛物线于,(,不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.18.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.19.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和20.(12分)设全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”充分条件,求a的取值范围;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.21.(12分)设函数.(1)求在处的切线方程;(2)求的极小值点和极大值点.22.(10分)已知等差数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C2、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C3、A【解析】利用“1”的妙用探讨命题“若p则q”的真假,取特殊值计算说明“若q则p”的真假即可判断作答.【详解】因为,由得:,则,当且仅当,即时取等号,因此,,因,,由,取,则,,即,,所以是的充分不必要条件.故选:A4、B【解析】根据正方体的性质,结合向量加减法的几何意义有,即可知所表示的向量.【详解】∵,而,∴,故选:B5、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.6、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C7、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.8、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)9、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.10、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C11、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C12、B【解析】求导,得到曲线在点处的斜率,写出切线方程.【详解】因为,所以曲线在点处斜率为4,所以曲线在点处的切线方程是,即,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、②③④【解析】根据不等式的性质,正弦定理与四种命题的概念,命题的否定,判断各命题【详解】①,满足,但,①错;②在中,由正弦定理,因此其逆命题也是真命题,②正确;③存在命题的否定是全称命题,命题“,”的否定是“,”,③正确;④由否命题的概念,“若,则”的否命题为“若,则”,④正确故答案为:②③④14、(答案不唯一)【解析】根据给定直线方程求出其方向向量,再由法向量意义求解作答.【详解】直线的方向向量为,而,所以直线的一个法向量.故答案为:15、##【解析】设,则,然后分别求出甲,乙,丙对应的结论,先假设甲正确,则得出乙错误,丙正确,由此即可求解【详解】解:设,则,甲:由可得,则,乙:由可得:,丙:由可得,即,所以,若,则,则不成立,,则,解得或,所以甲,丙正确,乙错误,此时或,又复数对应的点在复平面第一象限内,所以,故答案为:16、【解析】根据等比数列的定义,结合已知条件,代值计算即可求得结果.【详解】因为是等比数列,设其公比为,又,,故可得,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)涉及中点弦,用点差法处理即可求得,进而求得抛物线方程;(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设,直线,则直线分别和抛物线方程联立,解得利用,结合直线方程,即可证得直线的斜率为定值.【详解】(1)设,则,两式相减,得:由弦中点纵坐标为2,得,故.所以抛物线的标准方程.(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设直线由得由点在抛物线上,可知上述方程的一个根为.即,同理.直线的斜率为定值.【点睛】本题考查应用点差法处理中点弦问题,直线与抛物线中,斜率为定值问题,考查分析问题的能力,考查学生的计算能力,难度较难.18、(1)样本中高一年级学生的人数为,;(2);(3)【解析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.19、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以20、(1)(2)【解析】(1)由“”是“”的充分条件,可得,从而可得关于的不等式组,解不等式组可得答案;(2)“”是“”的必要条件,可得,然后分和两种情况求解即可【小问1详解】由题意得到A=[1,5],由“x∈A”是“x∈B”的充分条件可得A⊆B,则,解得,故实数a的取值范围是.【小问2详解】由“x∈A”是“x∈B”的必要条件可得B⊆A,当时,2-a>1+2a,即a<时,满足题意,当时,即a≥时,则,解得≤a≤1.综上a≤1,故实数a的取值范围是.21、(1);(2)极大值点,极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年天津机电职业技术学院单招职业适应性测试题库带答案详解
- 2026年宁夏工商职业技术学院单招职业倾向性考试题库及答案详解一套
- 2026年平凉职业技术学院单招职业适应性测试题库及答案详解一套
- 2026年运城师范高等专科学校单招职业适应性考试题库及完整答案详解1套
- 2026年云南现代职业技术学院单招职业技能考试题库及完整答案详解1套
- 2026年安徽国际商务职业学院单招职业倾向性考试题库含答案详解
- 2026年赣西科技职业学院单招职业适应性考试题库及答案详解一套
- 2026年云南商务职业学院单招职业倾向性考试题库及完整答案详解1套
- 2026年抚州职业技术学院单招职业技能测试题库及答案详解一套
- 2026年黔东南民族职业技术学院单招职业倾向性考试题库及参考答案详解1套
- 施工质量安全环保工期售后服务保障措施及相关的违约承诺
- 人工智能对生产关系变革的推动作用研究
- 沟槽施工安全培训课件
- 铸牢中华民族共同体课件
- 送餐车采购方案范本
- 2025贵州盘江煤电集团医院招聘68人笔试参考题库附答案解析
- 建筑工程土建施工技术方案
- 白天和夜间的消防应急预案(3篇)
- 液流电池原理讲解
- 盐酸羟考酮注射液用法
- 乳蛾中医护理
评论
0/150
提交评论