版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市十三中2026届数学高二上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是等差数列的前项和,,,则的最小值为()A. B.C. D.2.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了()A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面3.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直4.等比数列的公比,中有连续四项在集合中,则等于()A. B.C D.5.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.6.已知命题,则为()A. B.C. D.7.已知数列满足,,,前项和()A. B.C. D.8.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数9.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.10.下列数列是递增数列的是()A. B.C. D.11.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.4812.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为___________.14.若函数在[1,3]单调递增,则a的取值范围___15.已知曲线在点处的切线与曲线相切,则______.16.已知数列的前项和,则该数列的首项__________,通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,圆锥的底面直径与母线长均为4,PO是圆锥的高,点C是底面直径AB所对弧的中点,点D是母线PA的中点(1)求圆锥的表面积;(2)求点B到直线CD的距离18.(12分)已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值(1)求椭圆的方程;(2)求面积的最大值19.(12分)已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.20.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.21.(12分)甲乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求甲乙各投球一次,比赛结束的概率;(2)求甲获胜的概率22.(10分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据,可得,再根据,得,从而可得出答案.【详解】解:因为,所以,又,所以,所以的最小值为.故选:C.2、B【解析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.3、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C4、C【解析】经分析可得,等比数列各项的绝对值单调递增,将五个数按绝对值的大小排列,计算相邻两项的比值,根据等比数列的定义即可求解.【详解】因为等比数列中有连续四项在集合中,所以中既有正数项也有负数项,所以公比,因为,所以,且负数项为相隔两项,所以等比数列各项的绝对值单调递增,按绝对值排列可得,因,,,,所以是中连续四项,所以,故选:C.5、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.6、C【解析】将全称命题否定为特称命题即可【详解】由题意,根据全称命题与特称命题的关系,可得命题,则,故选:C.7、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C8、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.9、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决10、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.11、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D12、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出等边的边长,画出图形,判断D的位置,然后求解即可.【详解】为等边三角形且其面积为,则,如图所示,设点M为的重心,E为AC中点,当点在平面上的射影为时,三棱锥的体积最大,此时,,点M为三角形ABC的重心,,中,有,,所以三棱锥体积的最大值故答案为:【点睛】思路点睛:本题考查球的内接多面体,棱锥的体积的求法,要求内接三棱锥体积的最大值,底面是面积一定的等边三角形,需要该三棱锥的高最大,故需要底面,再利用内接球,求出高,即可求出体积的最大值,考查学生的空间想象能力与数形结合思想,及运算能力,属于中档题.14、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:15、2或10【解析】求出在处的导数,得出切线方程,与联立,利用可求.【详解】令,,则,,可得曲线在点处的切线方程为.联立,得,,解得或.故答案为:2或10.16、①.;②..【解析】空一:利用代入法直接进行求解即可;空二:利用之间的关系进行求解即可.【详解】空一:;空二:当时,,显然不适合上式,所以,故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)直接运用圆锥的表面积公式计算即可;(2)建立空间直角坐标,然后运用向量法计算可求得答案.【小问1详解】【小问2详解】如图,建立直角坐标系,,,,∴B在CD上投影的长度∴B到CD的距离解法2:设直线CD上一点E满足令,则∴,∴,∴∴,故B到CD距离为.18、(1)(2)【解析】(1)由抛物线焦点可得c,再根据离心率可得a,即得b;(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值【详解】试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积S=∴当t=0,△OAB面积的最大值为.19、(1)证明见解析,;(2).【解析】(1)将给定等式变形,计算即可判断数列类型,再求出其通项而得解;(2)利用(1)的结论求出数列的通项,然后利用错位相减法求解即得.【详解】(1)因数列满足,,则,而,于是数列是首项为1,公比为2的等比数列,,即,所以数列是等比数列,,;(2)由(1)知,则于是得,,所以数列的前项和.20、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用两边取自然对数,利用表中的数据即可求解;(2)分别计算模型①、②在时残差;(3)根据相关指数的大小判断摸型①、②的残差平方和,再得出那个模型的拟合效果更好.【小问1详解】由,得,令,得,由表Ⅱ数据可得,,,所以,所以回归方程为(或).【小问2详解】由题意可知,模型①在时残差为,模型②在时残差为.【小问3详解】因为,即模型①的相关指数大于模型②的相关指数,由相关指数公式知,模型①的残差平方和小于模型②的残差平方和,因此模型①得到的数据更接近真实数据,所以模型①的拟合效果更好.21、(1)(2)【解析】(1)设事件“甲在第次投篮投中”,设事件“乙在第次投篮投中”,记“甲乙各投球一次,比赛结束”为事件,则,利用独立事件和互斥事件的概率公式,即得解(2)记“甲获胜”为事件,由题意,根据概率的加法公式和独立事件的概率公式,即得解【小问1详解】设事件“甲在第次投篮投中”,其中设事件“乙在第次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/Z 30556.8-2025电磁兼容安装和减缓导则第8部分:分布式基础设施的HEMP防护方法
- 2026年眉山药科职业学院单招职业技能测试题库含答案详解
- 2026年辽宁医药职业学院单招职业适应性考试题库带答案详解
- 2026年石家庄财经职业学院单招职业倾向性测试题库及参考答案详解1套
- 2026年黎明职业大学单招职业技能测试题库附答案详解
- 2026年牡丹江大学单招职业技能测试题库附答案详解
- 2026年宝鸡三和职业学院单招职业技能测试题库带答案详解
- 2026年广西金融职业技术学院单招职业技能考试题库及答案详解1套
- 2026年长沙职业技术学院单招职业倾向性考试题库及答案详解1套
- 2026年山东旅游职业学院单招职业技能考试题库及答案详解1套
- 【2025年】熔化焊接与热切割操作证考试题库及答案
- 2025年检察院书记员面试真题及答案解析
- 石材购买意向合同(标准版)
- 小学四年级上册口算练习题500道(A4打印版)
- (2025年)(完整版)特种设备作业人员考试题库及答案
- 知到《性与生殖健康讲堂(湖南中医药大学)》智慧树网课完整版章节测试答案
- 车联网教育平台构建-洞察与解读
- 输液连接装置安全管理专家共识解读
- 国土变更调查培训
- 2025pmp历年考试真题及答案下载
- 《成人肠道菌群移植的护理规范》
评论
0/150
提交评论