甘肃省天水市甘谷第一中学2026届数学高一上期末学业质量监测模拟试题含解析_第1页
甘肃省天水市甘谷第一中学2026届数学高一上期末学业质量监测模拟试题含解析_第2页
甘肃省天水市甘谷第一中学2026届数学高一上期末学业质量监测模拟试题含解析_第3页
甘肃省天水市甘谷第一中学2026届数学高一上期末学业质量监测模拟试题含解析_第4页
甘肃省天水市甘谷第一中学2026届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省天水市甘谷第一中学2026届数学高一上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域为,若是奇函数,则A. B.C. D.2.函数的大致图像为()A. B.C. D.3.已知,若,则A.1 B.2C.3 D.44.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)5.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.86.下列各题中,p是q的充要条件的是()A.p:,q:B.p:,q:C.p:四边形是正方形,q:四边形的对角线互相垂直且平分D.p:两个三角形相似,q:两个三角形三边成比例7.下列函数中哪个是幂函数()A. B.C. D.8.若曲线与直线始终有交点,则的取值范围是A. B.C. D.9.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.10.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2012+b2013的值为()A.0B.1C.-1D.±1二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,.若,则___________.12.已知角A为△ABC的内角,cosA=-4513.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)14.已知,则_________15.已知函数(且)只有一个零点,则实数的取值范围为______16.设函数,若,则的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数=.(1)求的最小正周期;(2)求的单调递增区间;(3)当x,求函数的值域.18.已知函数.(1)求的最小正周期;(2)求的单调区间;(3)在给定的坐标系中作出函数的简图,并直接写出函数在区间上的取值范围.19.化简求值:(1)(2).20.若函数定义域为,且存在非零实数,使得对于任意恒成立,称函数满足性质(1)分别判断下列函数是否满足性质并说明理由①②(2)若函数既满足性质,又满足性质,求函数的解析式(3)若函数满足性质,求证:存在,使得21.已知.(1)求函数的单调递减区间;(2)求函数的最值并写出取最值时自变量的值;(3)若函数为偶函数,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由为奇函数,可得,求得,代入计算可得所求值【详解】是奇函数,可得,且时,,可得,则,可得,则,故选D【点睛】本题考查函数的奇偶性的判断和运用,考查定义法和运算能力,属于基础题2、D【解析】分析函数的定义域、奇偶性,以及的值,结合排除法可得出合适的选项.【详解】对任意的,,则函数的定义域为,排除C选项;,,所以,函数为偶函数,排除B选项,因为,排除A选项.故选:D.3、A【解析】构造函数,则为奇函数,根据可求得,进而可得到【详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【点睛】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题4、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.5、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.6、D【解析】根据充分条件、必要条件的判定方法,逐项判定,即可求解.【详解】对于A中,当时,满足,所以充分性不成立,反之:当时,可得,所以必要性成立,所以是的必要不充分条件,不符合题意;对于B中,当时,可得,即充分性成立;反之:当时,可得,即必要性不成立,所以是的充分不必要条件,不符合题意;对于C中,若四边形是正方形,可得四边形的对角线互相垂直且平分,即充分性成立;反之:若四边形的对角线互相垂直且平分,但四边形不一定是正方形,即必要性不成立,所以是充分不必要条件,不符合题意;对于D中,若两个三角形相似,可得两个三角形三边成比例,即充分性成立;反之:若两个三角形三边成比例,可得两个三角形相似,即必要性成立,所以是的充分必要条件,符合题意.故选:D.7、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.8、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.9、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.10、B【解析】根据题意,由{a,,1}={a2,a+b,0}可得a=0或=0,又由的意义,则a≠0,必有=0,则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=-1,集合{a,0,1}中,a≠1,则必有a=-1,则a2012+b2013=(-1)2012+02013=1,故选B点睛:集合的三要素是:确定性、互异性和无序性,集合的表示常用的有三种形式:列举法,描述法,Venn图法.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:12、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:313、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年14、【解析】利用交集的运算解题即可.【详解】交集即为共同的部分,即.故答案为:15、或或【解析】∵函数(且)只有一个零点,∴∴当时,方程有唯一根2,适合题意当时,或显然符合题意的零点∴当时,当时,,即综上:实数的取值范围为或或故答案为或或点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解16、【解析】当时,由,求得x0的范围;当x0<2时,由,求得x0的取值范围,再把这两个x0的取值范围取并集,即为所求.【详解】当时,由,求得x0>3;当x0<2时,由,解得:x0<-1.综上所述:x0的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据正弦型函数周期的计算公式,即可求得函数的最小正周期;(2)令,即可求得函数的单调递增区间;(3)由求得,结合正弦函数的性质求得其的最值,即可得到函数的值域.【小问1详解】由解析式可知:最小正周期为.【小问2详解】由解析式,令,解得,∴的单调递增区间为.【小问3详解】当,可得,结合正弦型函数的性质得:当时,即时,函数取得最大值,最大值为;当时,即时,函数取得最小值,最小值为,∴函数的值域为.18、(1)周期为;(2)递增区间是:,;递减区间是:[k+,k+],;(3)简图如图所示,取值范围是.【解析】(1)利用正弦函数的周期公式即可计算得解;(2)利用正弦函数的单调性解不等式即可求解;(3)利用五点作图法即可画出函数在一个周期内的图象,根据正弦函数的性质即可求解取值范围【详解】(1)因为函数,所以周期;(2)由,,得,.函数的单调递增区间是:,.函数的单调递减区间是:[k+,k+],;(3)函数即再简图如图所示.因为所以函数在区间上的取值范围是.19、(1)(2)【解析】(1)根据对数运算公式计算即可;(2)根据指数运算公式和根式的性质运算化简.【小问1详解】原式【小问2详解】原式.20、(1)①②满足性质,理由见解析(2)(3)证明见解析【解析】(1)计算,,得到答案.(2)根据函数性质变换得到,,,解得答案.(3)根据函数性质得到,取,当时满足条件,得到答案.【小问1详解】,故满足;,故满足.【小问2详解】且,故,,,解得.【小问3详解】,故,取得到,即,取,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论