版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届华中师大一附中高三上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为非零实数,且,则()A. B. C. D.2.在的展开式中,含的项的系数是()A.74 B.121 C. D.3.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.4.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.5.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.7.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.8.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.9.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.10.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.11.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且12.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中项的系数为_____.14.在的展开式中,的系数为______用数字作答15.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.16.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.(1)求证:;(2)若平面平面,求二面角的余弦值.18.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望19.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.20.(12分)已知,,分别为内角,,的对边,且.(1)证明:;(2)若的面积,,求角.21.(12分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.22.(10分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.2、D【解析】
根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,3、A【解析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.4、B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.5、A【解析】
利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.6、B【解析】
先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.7、A【解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,则,即,
又,解得:,∴,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.8、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.9、D【解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或..故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.10、C【解析】
根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.11、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.12、C【解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、15【解析】
由题得,,令,解得,代入可得展开式中含x6项的系数.【详解】由题得,,令,解得,所以二项式的展开式中项的系数为.故答案为:15【点睛】本题主要考查了二项式定理的应用,考查了利用通项公式去求展开式中某项的系数问题.14、1【解析】
利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数.【详解】二项展开式的通项为令得的系数为故答案为1.【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.15、4【解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得:,则整理得,,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.16、【解析】
求函数的导数,利用导数的几何意义即可求出切线方程.【详解】解:∵,
∴,
则,
又,即切点坐标为(1,0),
则函数在点(1,f(1))处的切线方程为,
即,
故答案为:.【点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)取中点为,连接,,,,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,,,为,,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,,,如下图所示:因为,,,所以,故为等边三角形,则.连接,因为,,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,,,为,,轴建立如图所示的空间直角坐标系,易求,则,,,,则,,.设平面的法向量,则即令,则,,故.设平面的法向量,则则令,则,,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.【点睛】本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.18、(1)(2)22.5(3)见解析,【解析】
(1)根据频数计算频率,得出概率;(2)根据优惠标准计算平均利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望.【详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为:0期望为:【点睛】本题考查概率、平均利润、离散型随机变量的分布列和数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题.19、(1),抛物线;(2)存在,.【解析】
(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线的抛物线.(2)不妨设.因为,所以,从而直线PA的斜率为,解得,即,又,所以轴.要使,只需.设直线m的方程为,代入并整理,得.首先,,解得或.其次,设,,则,..故存在直线m,使得,此时直线m的斜率的取值范围为.【点睛】本题考查直线与抛物线位置关系的应用,涉及抛物线中的存在性问题,考查学生的计算能力,是一道中档题.20、(1)见解析;(2)【解析】
(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面积公式列方程,由此求得,进而求得的值,从而求得角.【详解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【点睛】本小题主要考查余弦定理、正弦定理解三角形,考查三角形的面积公式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.21、(1);(2).【解析】
(1)求导得到,讨论和两种情况,计算函数的单调性,得到,再讨论,,三种情况,计算得到答案.(2)计算得到,讨论,两种情况,分别计算单调性得到函数最值,得到答案.【详解】(1),①当时恒成立,所以单调递增,因为,所以有唯一零点,即符合题意;②当时,令,函数在上单调递减,在上单调递增,函数。(i)当即,所以符合题意,(ii)当即时,因为,故存在,所以不符题意(iii)当时,因为,设,所以,单调递增,即,故存在,使得,不符题意;综上,的取值范围为。(2)。①当时,恒成立,所以单调递增,所以,即符合题意;②当时,恒成立,所以单调递增,又因为,所以存在,使得,且当时,。即在上单调递减,所以,不符题意。综上,的取值范围为.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46547-2025自然资源登记单元代码编制规则
- 2026年四川铁道职业学院单招职业适应性考试题库含答案详解
- 2026年炎黄职业技术学院单招职业适应性考试题库及答案详解一套
- 2026年济南工程职业技术学院单招职业倾向性考试题库及参考答案详解一套
- 2026年台州学院单招职业倾向性考试题库参考答案详解
- 2026年广东省肇庆市单招职业适应性考试题库及参考答案详解1套
- 2026年南昌影视传播职业学院单招综合素质考试题库及答案详解1套
- 2026年冀中职业学院单招职业适应性测试题库含答案详解
- 2026年满洲里俄语职业学院单招职业倾向性考试题库含答案详解
- 2026年泸州医疗器械职业学院单招职业倾向性考试题库含答案详解
- DL-T 606.4-2018 火力发电厂能量平衡导则 第4部分:电平衡
- 《普通心理学课程论文3600字(论文)》
- GB/T 5209-1985色漆和清漆耐水性的测定浸水法
- 12YJ6 外装修标准图集
- GB/T 14388-2010木工硬质合金圆锯片
- 大三上学期-免疫学第11章
- 《弹性波动力学》课程教学大纲
- 关于绩效考核与绩效工资分配工作的通知模板
- 2023第九届希望杯初赛六年级(含解析)
- OpenStack云计算平台实战课件(完整版)
- 中医舌象舌诊PPT课件
评论
0/150
提交评论