2026届云南省新平彝族傣自治县第一中学高二数学第一学期期末综合测试试题含解析_第1页
2026届云南省新平彝族傣自治县第一中学高二数学第一学期期末综合测试试题含解析_第2页
2026届云南省新平彝族傣自治县第一中学高二数学第一学期期末综合测试试题含解析_第3页
2026届云南省新平彝族傣自治县第一中学高二数学第一学期期末综合测试试题含解析_第4页
2026届云南省新平彝族傣自治县第一中学高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省新平彝族傣自治县第一中学高二数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺2.双曲线的左右焦点分别是,,直线与双曲线在第一象限的交点为,在轴上的投影恰好是,则双曲线的离心率是()A. B.C. D.3.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.4.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.5.数列中,满足,,设,则()A. B.C. D.6.已知是椭圆两个焦点,P在椭圆上,,且当时,的面积最大,则椭圆的标准方程为()A. B.C. D.7.设是数列的前项和,已知,则数列()A.是等比数列,但不是等差数列 B.是等差数列,但不是等比数列C.是等比数列,也是等差数列 D.既不是等差数列,也不是等比数列8.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点分别为,,,则△ABC的欧拉线方程为()A. B.C. D.9.的三个内角A,B,C所对的边分别为a,b,c,若,则()A. B.C. D.10.已知两个向量,,且,则的值为()A.1 B.2C.4 D.811.双曲线的渐近线方程是()A. B.C. D.12.集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以为焦点的双曲线上,则该双曲线的离心率为___________.14.已知拋物线的焦点F为,过点F的直线交该抛物线的准线于点A,与该抛物线的一个交点为B,且,则______15.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.他们根据沙粒或小石子所排列的形状把数分成许多类,下图中第一行的称为三角形数,第二行的称为五边形数,则三角形数的第10项为__________,五边形数的第项为__________.16.无穷数列满足:只要必有则称为“和谐递进数列”.已知为“和谐递进数列”,且前四项成等比数列,,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:18.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.19.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围20.(12分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.21.(12分)已知函数(1)解关于的不等式;(2)若不等式在上有解,求实数的取值范围22.(10分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.2、D【解析】根据题意的到,,代入到双曲线方程,解得,即,则,即,即,求解方程即可得到结果.【详解】设原点为,∵直线与双曲线在第一象限的交点在轴上的投影恰好是,∴,且,∴,将代入到双曲线方程,可得,解得,即,则,即,即,解得(舍负),故.故选:D.3、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.4、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C5、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力6、A【解析】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,即可解出【详解】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,∵时,△F1PF2的面积最大,∴a==,b=∴椭圆的标准方程为故选:A7、B【解析】根据与的关系求出通项,然后可知答案.【详解】当时,,当时,,综上,的通项公式为,数列为等差数列同理,由等比数列定义可判断数列不是等比数列.故选:B8、A【解析】求出重心坐标,求出AB边上高和AC边上高所在直线方程,联立两直线可得垂心坐标,即可求出欧拉线方程.【详解】由题可知,△ABC的重心为,可得直线AB的斜率为,则AB边上高所在的直线斜率为,则方程为,直线AC的斜率为,则AC边上高所在的直线斜率为2,则方程为,联立方程可得△ABC的垂心为,则直线GH斜率为,则可得直线GH方程为,故△ABC的欧拉线方程为.故选:A.9、D【解析】利用正弦定理边化角,角化边计算即可.【详解】由正弦定理边化角得,,再由正弦定理角化边得,即故选:D.10、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.11、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.12、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设点,根据抛物线的定义表示出,将用表示,并逐步转化为一个基本不等式形式,从而求出取最小值时的点的坐标,再根据双曲线的定义及离心率的公式求值.【详解】由题意可得,,,抛物线的准线为,设点,根据对称性,不妨设,由抛物线的定义可知,又,所以,当且仅当时,等号成立,此时,设以为焦点的双曲线方程为,则,即,又,,所以离心率.故答案为:.【点睛】关键点点睛:本题的关键是将的坐标表达式逐渐转化为一个可以用基本不等式求最值的式子,从而找出取最小值时的点的坐标.14、【解析】作垂直于准线,垂足为,准线与轴交于点,根据已知条件,利用几何方法,结合抛物线的定义得到答案.【详解】抛物线的焦点坐标,准线方程,作垂直于准线于,准线与轴交于点,则,∴.∵,∴,由抛物线的定义得,∴.故答案为:.15、①.②.【解析】对于三角形数,根据图形寻找前后之间的关系,从而归纳出规律利用求和公式即得,对于五边形数根据图形寻找前后之间的关系,然后利用累加法可得通项公式.【详解】由题可知三角形数的第1项为1,第2项为3=1+2,第3项为6=1+2+3,第4项为10=1+2+3+4,,因此,第10项为;五边形数的第1项为,第2项为,第3项为,第4项为,…,因此,,所以当时,,当时也适合,故,即五边形数的第项为.故答案为:55;.16、7578【解析】根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,∴,又,为“和谐递进数列”,∴,,,,…,∴数列是周期数列,周期为4∴故答案为:7578三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)求出的值,可求得等差数列的公差,进而可求得数列的通项公式,再由前项和与通项的关系可求得的表达式,可求得,然后对是否满足在时的表达式进行检验,综合可得出数列的通项公式;(2)求得,利用裂项求和法可求得的表达式,利用不等式的性质和数列的单调性可证得所证不等式成立.【小问1详解】解:因为,,所以,因为,,所以,设数列公差为,则,所以,当时,由,可得,所以,所以,因为满足,所以,对任意的,【小问2详解】证明:因为,所以,因为,所以,因为,所以,故数列单调递增,当时,,所以18、(1)(2)【解析】(1)利用正弦定理、余弦定理化简已知条件,求得,由此求得.(2)先求得,结合两角差的正弦公式求得.【小问1详解】,,即,,,.【小问2详解】由,可得,.19、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得的取值范围.【小问1详解】当时,,,所以在区间递减;在区间递增.所以的减区间为,增区间为.【小问2详解】,恒成立.构造函数,,,构造函数,,所以在上递增,,所以在上成立,所以,所以,即的取值范围是.20、(1)(2)【解析】(1)选①,利用化已知等式为,得是等差数列,公差,求出其通项公式后,再由求得通项公式,注意;选②,由可变形已知条件得是等差数列,从而求得通项公式;选③,已知式两边同除以,得出,以下同选①;(2)由错位相减法求和【小问1详解】选①,由得,,所以,即,所以是等差数列,公差,又,,,所以,,时,也适合所以;选②,由得,所以等差数列,公差为,又,所以;选③,由得,以下同选①,【小问2详解】由(1),,,两式相减得,所以21、(1)当时,或;当时,;当时,或(2)【解析】(1)由题意得对的值进行分类讨论可得不等式的解集;(2)将条件转化为,,再利用基本不等式求最值可得的取值范围;【小问1详解】,即,所以,所以,①当时不等式的解为或,②当时不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论