版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
韶关市重点中学2026届数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.2.若关于的方程在上有实数根,则实数的取值范围是()A. B.C. D.3.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且4.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.5.已知幂函数是偶函数,则函数恒过定点A. B.C. D.6.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B.C. D.7.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)8.函数是()A.奇函数,且上单调递增 B.奇函数,且在上单调递减C.偶函数,且在上单调递增 D.偶函数,且在上单调递减9.已知函数是定义在上的奇函数,当时,,则不等式的解集为()A. B.C.( D.10.函数,的图象形状大致是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足任意都有成立,那么的取值范围是___________.12.方程在上的解是______.13.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.14.函数的最小值是________.15.不等式的解集为___________.16.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简与计算(1);(2).18.已知函数(1)求函数的定义域及的值;(2)判断函数的奇偶性;(3)判断在上的单调性,并给予证明19.求值:(1);(2).20.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点(1)求证:EF∥平面ABD1;(2)AA1=,求异面直线EF与BC所成角的正弦值21.如图,在四边形中,,,,且.(Ⅰ)用表示;(Ⅱ)点在线段上,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.2、A【解析】当时,令,可得出,可得出,利用函数的单调性求出函数在区间上的值域,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】当时,令,则,可得,设,其中,任取、,则.当时,,则,即,所以,函数在上为减函数;当时,,则,即,所以,函数在上为增函数.所以,,,,则,故函数在上的值域为,所以,,解得.故选:A.3、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..4、B【解析】,由,得,,时,为,故选B5、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.6、A【解析】由题意,设,则,又由,求得,得t值,确定函数的解析式,据此分析可得,即,又由,利用换底公式,求得,结合对数的运算性质分析可得答案【详解】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选A【点睛】本题主要考查了函数的单调性的应用,以及对数的运算性质的应用,其中解答中根据题意,设,求得实数的值,确定出函数的解析式,再利用对数的运算性质求解是解答的关键,着重考查了分析问题和解答问题的能力,以及换元思想的应用,属于中档试题7、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C8、A【解析】根据函数奇偶性和单调性的定义判定函数的性质即可.【详解】解:根据题意,函数,有,所以是奇函数,选项C,D错误;设,则有,又由,则,,则,则在上单调递增,选项A正确,选项B错误.故选:A.9、C【解析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【详解】因为当时,,且函数是定义在上的奇函数,所以时,,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.10、D【解析】先根据函数奇偶性排除AC,再结合特殊点的函数值排除B.【详解】定义域,且,所以为奇函数,排除AC;又,排除B选项.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.12、##【解析】根据三角函数值直接求角.【详解】由,得或,即或,又,故,故答案为.13、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,14、2【解析】直接利用基本不等式即可得出答案.【详解】解:因为,所以,当且仅当,即时,取等号,所以函数的最小值为2.故答案为:2.15、【解析】根据对数函数的单调性解不等式即可.【详解】由题设,可得:,则,∴不等式解集为.故答案:.16、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)5【解析】(1)根据指数的运算性质计算即可;(2)根据对数的运算法则计算即可.【小问1详解】原式=.【小问2详解】原式.18、(1)(2)偶函数(3)在上是减函数,证明见解析.【解析】(1)根据对数函数成立的条件即可求函数f(x)的定义域及的值;(2)根据函数奇偶性的定义即可判断函数的奇偶性;(3)利用函数单调性的定义进行判断和证明.【详解】(1)因为,所以,解得,所以函数的定义域为.(2)由(1)知函数的定义域关于原点对称,且,所以函数是偶函数.(3)在上是减函数.设,且,则,因为,所以,所以,即,所以在上是减函数.【点睛】方法点睛:利用定义法证明函数的单调性,第一步设且,第二步做差,变形,判断差的符号,第三步根据差的符号作出结论.19、(1);(2)5.【解析】(1)利用指数幂的运算法则计算即得解;(2)利用对数的运算法则化简计算即得解.【详解】(1)原式=;(2)原式=.【点睛】本题主要考查指数对数的运算,意在考查学生对这些知识的理解掌握水平.20、(1)证明过程详见解析(2)【解析】(1)先证明EF∥D1B,即证EF∥平面ABD1.(2)先证明∠D1BC是异面直线EF与BC所成的角(或所成角的补角),再解三角形求其正弦值.【详解】(1)证明:连结BD1,在△DD1B中,E、F分别是D1D、DB的中点,∴EF是△DD1B的中位线,∴EF∥D1B,∵D1B⊂平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是异面直线EF与BC所成的角(或所成角的补角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1⊄平面CDD1C1,∴BC⊥CD1.在Rt△D1C1C中,BC=2,CD1=,D1C⊥BC,∴sin∠D1BC=,【点睛】本题主要考查空间直线平面位置关系的证明和异面直线所成角的计算,意在考查学生对这些知识的掌握水平和分析推理能力.21、(Ⅰ)(Ⅱ)【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浏阳市金阳医院第三批公开招聘编外合同制人员备考题库及参考答案详解一套
- 后勤干部考试题及答案
- 梁平国企考试试题及答案
- 2025年九江市寻阳实业集团有限公司面向社会公开招聘工作人员9人备考题库及参考答案详解一套
- 福建教招考试真题及答案
- 2026年广州医科大学附属口腔医院招聘备考题库(一)及答案详解一套
- 中国铁路南昌局集团有限公司2026年度招聘本科及以上学历毕业生494人备考题库及一套完整答案详解
- 邵东医疗考试试题及答案
- 天才基本法考试题及答案
- 2025年江苏省综合评标评审专家库专家考试(交通专业知识)历年参考题及答案
- 去毛刺培训知识课件
- 2025公共基础知识考试题库及答案详解(真题汇编)
- 实施指南(2025)《JC-T 2822-2024 水泥替代原料》
- 2025餐饮联营合同-协议范本(标准版)
- 中介服务选取管理办法
- 2025年乡镇环卫工人招聘考试试题
- 土地征收与拆迁课件
- 传播学研究方法 课件全套 ch1-导论-传播学研究方法的发展历程 -ch18-大数据的分析与可视化-用图表勾勒网络关系
- 2025年部编版三年级语文上册全册教案
- 富斯遥控器FS-i6说明书
- 中医推拿知识培训课件
评论
0/150
提交评论