黑龙江省哈尔滨师大附中2026届高一数学第一学期期末考试试题含解析_第1页
黑龙江省哈尔滨师大附中2026届高一数学第一学期期末考试试题含解析_第2页
黑龙江省哈尔滨师大附中2026届高一数学第一学期期末考试试题含解析_第3页
黑龙江省哈尔滨师大附中2026届高一数学第一学期期末考试试题含解析_第4页
黑龙江省哈尔滨师大附中2026届高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨师大附中2026届高一数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则,,的大小关系是()A. B.C. D.2.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件3.设,,且,则A. B.C. D.4.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.5.已知函数关于直线对称,且当时,恒成立,则满足的x的取值范围是()A. B.C. D.6.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点7.函数的零点所在的区间是A. B.C. D.8.已知为钝角,且,则()A. B.C. D.9.下列函数,表示相同函数的是()A., B.,C., D.,10.已知,,,则a、b、c大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.请写出一个最小正周期为,且在上单调递增的函数__________12.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.13.已知函数的部分图像如图所示,则_______________.14.函数f(x)=2x+x-7的零点在区间(n,n+1)内,则整数n的值为______15.已知函数,则______16.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.直线l经过两点(2,1)、(6,3).(1)求直线l的方程;(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程18.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值19.一个半径为2米的水轮如图所示,其圆心O距离水面1米,已知水轮按逆时针匀速转动,每4秒转一圈,如果当水轮上点P从水中浮现时(图中点)开始计算时间.(1)以过点O且与水面垂直的直线为y轴,过点O且平行于水轮所在平面与水面的交线的直线为x轴,建立如图所示的直角坐标系,试将点P距离水面的高度h(单位:米)表示为时间t(单位:秒)的函数;(2)在水轮转动的任意一圈内,有多长时间点P距水面的高度超过2米?20.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.21.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为万元,每生产万件,需另投入成本为.当年产量不足万件时,(万元);当年产量不小于万件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分别求出的范围,然后再比较的大小.【详解】,,,,,,并且,,综上可知故选:B【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.2、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.3、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围4、C【解析】设,根据题意得出,由建立方程组求解即可.【详解】设,因为,所以即故选:C【点睛】本题主要考查了由向量共线求参数,属于基础题.5、B【解析】根据题意,得到函数为偶函数,且在为单调递减函数,则在为单调递增函数,把不等式,转化为,即可求解.【详解】由题意,函数关于直线对称,所以函数为偶函数,又由当时,恒成立,可得函数在为单调递减函数,则在为单调递增函数,因为,可得,即或,解得或,即不等式的解集为,即满足的x的取值范围是.故选:B.6、D【解析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【详解】解:,,∴是边上的一个三等分点故选:D【点睛】本题考查向量的运算法则及三点共线的充要条件,属于基础题7、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得

这个也就是方程的根.由此可判断根所在区间.8、C【解析】先求出,再利用和角的余弦公式计算求解.【详解】∵为钝角,且,∴,∴故选:C【点睛】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.9、B【解析】由两个函数相同的定义,定义域相同且对应法则相同,依次判断即可【详解】选项A,一个为指数运算、一个为对数运算,对应法则不同,因此不为相同函数;选项B,,为相同函数;选项C,函数定义域为,函数定义域为,因此不为相同函数;选项D,与函数对应法则不同,因此不为相同函数故选:B10、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、或(不唯一).【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).12、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.13、【解析】首先确定函数的解析式,然后求解的值即可.【详解】由题意可得:,当时,,令可得:,据此有:.故答案为:.【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.14、2【解析】因为函数f(x)的图象是连续不断的一条曲线,又f(0)=20+0-7=-6<0,f(1)=21+1-7=-4<0,f(2)=22+2-7=-1<0,f(3)=23+3-7=4>0所以f(2)·f(3)<0,故函数f(x)的零点所在的一个区间是(2,3),所以整数n的值为2.15、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.16、【解析】根据给定条件求出扇形所在圆的半径即可计算作答.【详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x-2y=0;(2)(x-2)2+(y-1)2=1【解析】(1)由直线过的两点坐标求得直线斜率,在借助于点斜式方程可得到直线方程;(2)借助于圆的几何性质可知圆心在直线上,又圆心在直线上,从而可得到圆心坐标,圆心与的距离为半径,进而可得到圆的方程试题解析:(1)由已知,直线的斜率,所以,直线的方程为.(2)因为圆的圆心在直线上,可设圆心坐标为,因圆与轴相切于点,所以圆心在直线上,所以,所以圆心坐标为,半径为1,所以,圆的方程为考点:1.直线方程;2.圆的方程18、a=-1或a=2【解析】函数的对称轴是,根据与区间的关系分类讨论得最大值,由最大值求得【详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=(舍去)(3)当a>1时,f(x)max=f(1)=a,∴a=2综上可知,a=-1或a=2【点睛】关键点点睛:本题考查二次函数最值问题.二次函数在区间最值问题,一般需要分类讨论,分类标准是对称轴与区间的关系,如果,求最小值时分三类:,,,求最大值只要分两类:和,类似分类19、(1);(2)秒【解析】(1)设,根据题意求得、的值,以及函数的最小正周期,可求得的值,根据的大小可得出的值,由此可得出关于的函数解析式;(2)由得出,令,求得的取值范围,进而可解不等式,可得出的取值范围,进而得解.【详解】解:(1)如图所示,标出点M与点N,设,根据题意可知,,所以,根据函数的物理意义可知:,又因为函数的最小正周期为,所以,所以可得:.(2)根据题意可知,,即,当水轮转动一圈时,,可得:,所以此时,解得:,又因为(秒),即水轮转动任意一圈内,有秒的时间点P距水面的高度超过2米20、(1);(2).【解析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论