全国2026届高二数学第一学期期末考试试题含解析_第1页
全国2026届高二数学第一学期期末考试试题含解析_第2页
全国2026届高二数学第一学期期末考试试题含解析_第3页
全国2026届高二数学第一学期期末考试试题含解析_第4页
全国2026届高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全国2026届高二数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线上一点到焦点的距离为5,则点的坐标为()A. B.C. D.2.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆 B.椭圆C.双曲线的一支 D.抛物线3.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.4.函数有两个不同的零点,则实数的取值范围是()A. B.C. D.5.如图,P为圆锥的顶点,O是圆锥底面的圆心,圆锥PO的轴截面PAE是边长为2的等边三角形,是底面圆的内接正三角形.则()A. B.C. D.6.棱长为1的正四面体的表面积是()A. B.C. D.7.某校高二年级统计了参加课外兴趣小组的学生人数,每人只参加一类,数据如下表:学科类别文学新闻经济政治人数400300100200若从参加课外兴趣小组的学生中采用分层抽样的方法抽取50名参加学习需求的问卷调查,则从文学、新闻、经济、政治四类兴趣小组中抽取的学生人数分别为()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,108.若,则下列正确的是()A. B.C. D.9.已知直线与直线垂直,则()A. B.C. D.310.已知等差数列的前n项和为,且,则()A.2 B.4C.6 D.811.下列数列是递增数列的是()A. B.C. D.12.已知抛物线C:,焦点为F,点到在抛物线上,则()A.3 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______14.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x()为二次函数的关系(如图),则每辆客车营运年数为________时,营运的年平均利润最大15.设函数,,若存在,成立,则实数的取值范围为__________.16.给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值18.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.19.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数的取值范围20.(12分)已知椭圆的左焦点为,点到短袖的一个端点的距离为.(1)求椭圆的方程;(2)过点作斜率为的直线,与椭圆交于,两点,若,求的取值范围.21.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(1)已知样本中分数在[40,50)的学生有5人,试估计总体中分数小于40的人数;(2)试估计测评成绩的75%分位数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例22.(10分)设AB是过抛物线焦点F的弦,若,,求证:(1);(2)(为弦AB的倾斜角)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,由抛物线的方程可得准线方程为,由抛物线的性质到焦点的距离等于到准线的距离,求出,解出纵坐标,进而求出【详解】由题意可得,解得,代入抛物线的方程,解得,所以的坐标,故选:C.2、C【解析】设动圆圆心,与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,列出几何关系式,化简,再根据圆锥曲线的定义,可得到动圆圆心轨迹.【详解】设动圆圆心,半径为,圆x2+y2=1的圆心为,半径为,圆x2+y2﹣8x+12=0,得,则圆心,半径为,根据圆与圆相切,则,,两式相减得,根据定义可得动圆圆心轨迹为双曲线的一支.故选:C【点睛】本题考查了两圆的位置关系,圆锥曲线的定义,属于基础题.3、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A4、B【解析】方程有两个根,转化为求函数的单调性与极值【详解】函数定义域是,有两个零点,即有两个不等实根,即有两个不等实根设,则,时,,递减,时,,递增,极小值=,而时,,时,,所以故选:B5、B【解析】先求出,再利用向量的线性运算和数量积计算求解.【详解】解:由题得,,故选:B6、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D7、D【解析】利用分层抽样的等比例性质求抽取的样本中所含各小组的人数.【详解】根据分层抽样的等比例性质知:文学小组抽取人数为人;新闻小组抽取人数为人;经济小组抽取人数为人;政治小组抽取人数为人;故选:D.8、D【解析】根据不等式性质并结合反例,即可判断命题真假.【详解】对于选项A:若,则,由题意,,不妨令,,则此时,这与结论矛盾,故A错误;对于选项B:当时,若,则,故B错误;对于选项C:由,不妨令,,则此时,故C错误;对于选项D:由不等式性质,可知D正确.故选:D.9、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.10、B【解析】根据等差数列前n项和公式,结合等差数列下标的性质、等差数列通项公式进行求解即可.【详解】设等差数列的公差为,,,故选:B11、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.12、D【解析】利用抛物线的定义求解.【详解】因为点在抛物线上,,解得,利用抛物线的定义知故选:D二、填空题:本题共4小题,每小题5分,共20分。13、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12014、5【解析】首先根据题意得到二次函数的解析式为,再利用基本不等式求解的最大值即可.【详解】根据题意得到:抛物线的顶点为,过点,开口向下,设二次函数的解析式为,所以,解得,即,则营运的年平均利润,当且仅当,即时取等号故答案为:5.15、【解析】由不等式分离参数,令,则求即可【详解】由,得,令,则当时,;当时,;所以在上单调递减,在上单调递增,故由于存在,成立,则故答案为:16、②③【解析】由垂直于同一直线的两直线的位置关系判断①;由直线与平面垂直的性质判断②③;由空间中平面与平面的位置关系判断④【详解】①若两条不同的直线垂直于第三条直线,则这两条直线有三种位置关系:平行、相交或异面,故错误;②根据线面垂直的性质知,若两个不同的平面垂直于一条直线,则这两个平面互相平行,故正确;③由线面垂直的性质知:若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行,故正确④若两个不同的平面同时垂直于第三个平面,这两个平面相交或平行,故错误.其中所有正确命题的序号为②③故答案为:②③三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)利用正弦定理边化角,然后可解;(2)利用余弦定理求出c,然后检验可得.【小问1详解】,即或【小问2详解】因为是锐角三角形,所以因为所以由余弦定理得:即,解得或若,则,所以,不满足题意;若,因为,且,所以,此时是锐角三角形.所以.18、(1);(2)存在,.【解析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.【小问2详解】由题意可知,直线的斜率不为0,故设直线的方程为,.联立,得,恒成立,由韦达定理,得,,假设存在一点,满足题意,则直线的斜率与直线的斜率满足,即,所以,所以解得,所以存在一点,满足,点的坐标为.19、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:的圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.20、(1)(2)或【解析】(1)根据焦点坐标可得,根据点到短袖一个端点的距离为,然后根据即可;(2)先设联立直线与椭圆的方程,然后根据韦达定理得到,两点的坐标关系,然后根据建立关于直线的斜率的不等式,解出不等式即可.【小问1详解】根据题意,已知椭圆的左焦点为,则有:点到短袖一个端点的距离为,则有:则有:故椭圆的方程为:【小问2详解】设过点作斜率为的直线的方程为:联立直线与椭圆的方程可得:则有:,直线过点,所以恒成立,不妨设,两点的坐标分别为:,则有:又且则有:将,代入后可得:若,则有:解得:或21、(1)20人(2)(3)【解析】(1)根据频率分布直方图先求出样本中分数在[40,90)的频率,即可解出;(2)先根据频率分布直方图判断出75%分位数在[70,80)之间,即可根据分位数公式算出;(3)根据频率分布直方图知分数不小于70分的人数中男女各占30人,从而可知样本中男生有60人,女生有40人,即可求出总体中男生和女生人数的比例【小问1详解】由频率分布直方图知,分数在[50,90)频率为(0.01+0.02+0.04+0.02)×10=0.9,在样本中分数在[50,90)的人数为100×0.9=90(人),在样本中分数在[40,90)的人数为95人,所以分数在[40,90)的人数为400×0.95=380(人),总体中分数小于40的人数为20人【小问2详解】测试成绩从低到高排序,占人数75%的人分数在[70,80)之间,所以估计测评成绩的75%分位数为【小问3详解】由频率分布直方图知,分数不小于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论