人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)_第1页
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)_第2页
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)_第3页
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)_第4页
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40° B.50° C.65° D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2 B.2 C.3 D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20° B.35° C.40° D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴 B.相等的圆心角所所对的弦相等 C.三角形的外心到三条边的距离相等 D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C. D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40° B.45° C.50° D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.5 B.3 C.2 D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65° B.35° C.25° D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2 C.4 D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2 B.πcm2 C.πcm2 D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为cm.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.

参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tanA==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.12.解:∵∠C=90°,BC=3cm,AC=2cm,∴AB=cm,如图,由旋转知,∠BAB1=∠CAC1=90°,△ABC≌△AB1C1,则线段BC所扫过的面积S=+﹣S△ABC﹣=﹣=﹣=π(cm2),故选:A.二.填空题(共6小题)13.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OEsin∠OEA=×2×OE×cos∠OEA×OEsin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.15.解:作直径AD,连接CD,如图所示:∵AD是圆O的直径,∴∠ACD=90°,∴∠OAC+∠D=90°,∵∠ABC+∠D=180°,∴∠ABC﹣∠OAC=180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S扇形OAC==4π,S△AOC=×4×4=8,∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.

人教版九年级上册第24章数学圆单元测试卷(含答案)(8)一、选择题(本大题10小题,每小题3分,共30分)1.下列说法错误的是(C)A.半圆是弧B.半径相等的圆是等圆C.过圆心的线段是直径D.直径是弦2.如图24-1,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为(B)A.25°B.50°C.60°D.80°图24-1图24-2图24-33.如图24-2,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为(C)A.80°B.60°C.40°D.50°4.如图24-3,四边形ABCD为圆内接四边形,∠A=85°,∠B=105°,则∠C的度数为(C)A.115°B.75°C.95°D.无法确定5.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为(A)A.6cmB.12cmC.2cmD.eq\r(6)cm6.已知⊙O的直径为12cm,圆心到直线l的距离5cm,则直线l与⊙O的公共点的个数为(A)A.2个B.1个C.0个D.不确定7.如图24-4,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD,若∠BAC=44°,则∠AOD等于(D)A.22°B.44°C.66°D.88°图24-4图24-5图24-6图24-78.如图24-5,AB是⊙O的弦,OC⊥AB于点H,∠AOC=60°,OH=1,则⊙O的半径为(B)A.eq\r(3)B.2C.3D.49.如图24-6,P是⊙O外一点,PA,PB分别交⊙O于C,D两点,已知eq\o(\s\up14(⌒),\s\do5(AB)),eq\o(\s\up14(⌒),\s\do5(CD))的度数别为88°,32°,则∠P的度数为(B)A.26°B.28°C.30°D.32°10.如图24-7,在ABCD中,AD=2,AB=4,∠A=60°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(A)A.3eq\r(3)-eq\f(2π,3)B.3eq\r(3)-eq\f(π,3)C.4eq\r(3)-eq\f(2π,3)D.4eq\r(3)-eq\f(π,3)二、填空题(本大题6小题,每小题4分,共24分)11.已知点P与⊙O在同一平面内,⊙O的半径为4cm,OP=5cm,则点P与⊙O的位置关系为点P在⊙O外.12.一个正n边形的中心角等于18°,那么n=20.13.如图24-8,在⊙O中,AB=DC,∠AOB=35°,则∠COD=35°.图24-8图24-9图24-1014.如图24-9,在△ABC中,AB=6,AC=8,BC=10,D,E分别是AC,AB的中点,则以DE为直径的圆与BC的位置关系是相交.15.已知如图24-10,PA,PB切⊙O于A,B两点,MN切⊙O于点C,交PB于点N.若PA=7.5cm,则△PMN的周长是15cm.16.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于20πcm2.三、解答题(一)(本大题3小题,每小题6分,共18分)17.如图24-11,点A,B,C,D,E,F分别在⊙O上,AC=BD,CE=DF,连接AE,BF.△ACE与△BDF全等吗?为什么?图24-11解:△ACE与△BDF全等.理由如下.∵AC=BD,CE=DF,∴eq\o(\s\up14(⌒),\s\do5(AC))=eq\o(\s\up14(⌒),\s\do5(BD)),eq\o(\s\up14(⌒),\s\do5(CE))=eq\o(\s\up14(⌒),\s\do5(DF)),eq\o(\s\up14(⌒),\s\do5(AE))=eq\o(\s\up14(⌒),\s\do5(BF)).∴AE=BF.在△ACE和△BDF中,∴△ACE≌△BDF(SSS).18.如图24-12,在⊙O中,弦AB与弦AC相等,AD是⊙O的直径.求证:BD=CD.图24-12证明:∵AB=AC,∴eq\o(\s\up14(⌒),\s\do5(AB))=eq\o(\s\up14(⌒),\s\do5(AC)).∴∠ADB=∠ADC.∵AD是⊙O的直径,∴∠B=∠C=90°.∴∠BAD=∠DAC.∴eq\o(\s\up14(⌒),\s\do5(BD))=eq\o(\s\up14(⌒),\s\do5(CD)).∴BD=CD.19.如图24-13,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.求⊙O的半径长.图24-13解:如答图24-1,连接AO.∵半径OC⊥弦AB,∴AD=BD.∵AB=12,答图24-1∴AD=BD=6.设⊙O的半径为R,∵CD=2,∴OD=R-2.在Rt△AOD中,OA2=OD2+AD2,即R2=(R-2)2+62.∴R=10.∴⊙O的半径长为10.四、解答题(二)(本大题3小题,每小题7分,共21分)20.图24-14如图24-14,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D,若AB=10,求BD的长.解:如答图24-2,连接AD.∵AB是⊙O的直径,∴∠ACB=∠ADB=90°.答图24-2∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD.∴eq\o(\s\up14(⌒),\s\do5(AD))=eq\o(\s\up14(⌒),\s\do5(BD)).∴AD=BD.∴在Rt△ABD中,AD=BD=eq\f(\r(2),2)AB=eq\f(\r(2),2)×10=5eq\r(2).21.图24-15如图24-15,已知⊙O的周长等于6πcm,求以它的半径为边长的正六边形ABCDEF的边心距OP的长.解:如答图24-3,连接OB,OC.设正六边形的边长为R,则⊙O的半径为R.由题意,得2πR=6π.∴R=3(cm).则∠POC=eq\f(360°,6)×eq\f(1,2)=30°,PC=eq\f(1,2)OC=eq\f(3,2)(cm).答图24-3在Rt△OPC中,边心距OP=eq\r(OC2-PC2)=eq\f(3\r(3),2)(cm).22.如图24-16,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AC相切于点P.求证:BP平分∠ABC.图24-16证明:如答图24-4,连接OP.∵AC是⊙O的切线,∴OP⊥AC.又∵BC⊥AC,∴OP∥BC.∴∠OPB=∠PBC.∵OP=OB,答图24-4∴∠OPB=∠OBP.∴∠PBC=∠OBP.∴BP平分∠ABC.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图24-17,C,D是以AB为直径的半圆周的三等分点,CD=8cm,P是直径AB上的任意一点.(1)求eq\o(\s\up14(⌒),\s\do5(CD))的长;(2)求阴影部分的面积.图24-17解:(1)如答图24-5,连接OC,OD.依题意,得∠COD=eq\f(180°,3)=60°.又∵OC=OD,∴△COD是等边三角形.∴OC=OD=8cm.∴eq\o(\s\up14(⌒),\s\do5(CD))的长为eq\f(60π×8,180)=eq\f(8,3)π(cm).答图24-5(2)∵∠OCD=∠POC=60°,∴CD∥AB.∴S△PCD=S△OCD.∴S阴影=S扇形COD=eq\f(60π×82,360)=eq\f(32,3)π(cm2).24.如图24-18,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积.(结果保留π)图24-18(1)证明:连接DE,OD,如答图24-6.∵BC与⊙O相切于点D,∴∠ODB=90°.∵AC⊥BC,∴∠ACD=90°.∴OD∥AC.∴∠ODA=∠CAD.又∵OA=OD,∴∠OAD=∠ODA.∴∠OAD=∠CAD.∴AD平分∠BAC.答图24-6(2)解:∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°.∵BC与⊙O相切于点D,∴∠ODB=90°.∴∠BOD=45°.∴OD=BD.设BD=x,则OD=OA=x,OB=eq\r(2)x,∴BC=AC=x+1.∵AC2+BC2=AB2,∴2(x+1)2=(eq\r(2)x+x)2.解得x=eq\r(2).∴BD=OD=eq\r(2).∴图中阴影部分的面积=S△BOD-S扇形DOE=eq\f(1,2)×eq\r(2)×eq\r(2)-eq\f(45·π(\r(2))2,360)=1-eq\f(π,4).25.如图24-19,以△ABC的BC边上一点O为圆心作圆,⊙O经过A,C两点且与BC边交于点E,点D为eq\o(\s\up14(⌒),\s\do5(CE))的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;图24-19(2)若CF=4,DF=eq\r(10),求⊙O的半径r.(1)证明:如答图24-7,连接OA,OD.∵点D为eq\o(\s\up14(⌒),\s\do5(CE))的中点,∴OD⊥BC.∴∠EOD=90°.∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D.而∠BFA=∠OFD,∠OFD+∠D=90°,答图24-7∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°.∴OA⊥AB.∴AB是⊙O的切线.(2)解:∵OF=CF-OC=4-r,OD=r,DF=eq\r(10),在Rt△DOF中,OD2+OF2=DF2,即r2+(4-r)2=(eq\r(10))2.解得r1=3,r2=1(不符题意,舍去).∴半径r=3

人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径 B.弧是半圆 C.半圆是圆中最长的弧 D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75° B.65° C.60° D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100° B.80° C.50° D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100° B.110° C.120° D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50° B.55° C.60° D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3 B.12+6 C.18+3 D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2 B.4 C.4 D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣π B.2﹣π C.4﹣π D.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A. B.2 C. D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2 B.π﹣ C.π﹣2 D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3 D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D(1)求AD的长;(2)求DE的长.

参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD==,AC=2CD=2,∵sin∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=OB×AC=×2×2=2,S扇形AOC==,则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=π﹣2,故选:C.12.解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD⊥AC,∴AC为⊙O切线;(2)解:∵BE为⊙O的直径,∴∠BDE=90°,∴∠C=∠BDE,∵∠CBD=∠EBD,∴△CBD∽△DBE,∴,即=,∴BE=10,∴⊙O半径OB=5;∴DE=6,∵点F为的中点,∴=,∴∠EDF=∠BDF=45°,过B作BM⊥DF于M,过E作EN⊥DF于N,连接EF,∴BM=BD=4,EN=DE=3,EF=BE=5,∴S四边形BDEF=S△BEF+S△BDE=S△DEF+S△DBF,∴×5×5+×6×8=×3DF+×4DF,∴DF=7.19.解:(1)ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即AC=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论