版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省湘南高一数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,下列结论成立是()A. B.C. D.2.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为()A. B.C. D.3.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.4.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.645.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为A. B.C. D.6.已知幂函数在上单调递减,则()A. B.5C. D.17.已知角的终边经过点,则A. B.C. D.8.如图,在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆的交点为,将绕坐标原点逆时针旋转至,过点作轴的垂线,垂足为.记线段的长为,则函数的图象大致是A. B.C. D.9.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则10.sin1830°等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,则=______________12.命题“,”的否定形式为__________________________.13.在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.14.已知,则的最小值为_______________.15.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可)16.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是,其中的振幅为2,且经过点.(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)将函数图象上各点的横坐标变为原来的倍,纵坐标不变得到函数的图象.若锐角满足,求的值.18.已知集合,集合,集合.(1)求;(2)若,求实数a的取值范围.19.求下列各式的值(1)(2)(3)(4)20.已知均为正数,且,证明:,并确定为何值时,等号成立.21.已知定义域为的函数是奇函数(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域上的单调性;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅳ)设关于的函数有零点,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用集合的交、并、补运算进行判断.【详解】因为,所以,故A错;,故B错;,故D错.故选:C2、C【解析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和3、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.4、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.5、D【解析】由三视图知几何体为圆柱挖去一个圆锥所得的组合体,且圆锥与圆柱的底面直径都为4,高为2,则圆锥的母线长为,∴该几何体的表面积S=π×22+2π×2×2+π×2×2=(12+4)π,故选D.6、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.7、D【解析】由任意角的三角函数定义列式求解即可.【详解】由角终边经过点,可得.故选D.【点睛】本题主要考查了任意角三角函数的定义,属于基础题.8、B【解析】,所以选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.9、B【解析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【点睛】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.10、A【解析】根据诱导公式计算【详解】故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】先换元求得函数,然后然后代入即可求解.【详解】且,令,则,即,解得,故答案为:3.12、##【解析】根据全称量词命题的否定直接得出结果.【详解】命题“”的否定为:,故答案为:13、【解析】根据二分法,取区间中点值,而,,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间14、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.15、【解析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程.【详解】因为,,所以,即该一元二次方程的两根之和为3,两根之积为2,所以以、为根的一元二次方程可以是.16、(1).(2).或【解析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用函数的振幅求得,代入求得的值,从而求得函数,利用对称性求得函数;(2)利用三角函数图像变换求得,由得,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由振幅为2知,,代入有,,而,而与关于轴对称,【小问2详解】由已知,,,而,故,.18、(1)(2)【解析】(1)先化简集合A,B,再利用交集运算求解;(2)根据,化简集合,再根据求解.【小问1详解】解:∵,∴,∴集合.∵,∴,∴集合.∴.【小问2详解】∵,∴.∵,∴,解得.∴实数a的取值范围是.19、(1)0;(2);(3);(4).【解析】(1)(2)利用和角的余弦公式,差角的正弦结合诱导公式分别计算作答.(3)(4)逆用二倍角的正弦、余弦公式求解作答.【小问1详解】.【小问2详解】.【小问3详解】.【小问4详解】.20、证明见解析,时,等号成立.【解析】根据重要不等式及均值不等式证明即可.【详解】证明:因为均为正数,所以.所以①故,而.②所以原不等式成立.当且仅当①式和②式等号成立,即当且仅当时,故当且仅当时,原不等式等号成立.21、(Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ).【解析】(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围.试题解析:(Ⅰ)由题设,需,∴,∴,经验证,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年福建林业职业技术学院单招职业技能考试题库及答案详解一套
- 2026年河南建筑职业技术学院单招职业适应性考试题库及参考答案详解1套
- 2026年内蒙古建筑职业技术学院单招职业倾向性考试题库及答案详解一套
- 2026年四川财经职业学院单招职业适应性考试题库带答案详解
- 晋级教师面试题目及答案
- 洗衣厂送酒店床上用品安全协议书范本
- 2025年中国移动兴业分公司招聘备考题库附答案详解
- 2025年固定收益客需部人力资源部(党委组织部)招聘备考题库及答案详解1套
- 长春光华学院2025-2026学年第一学期招聘34人备考题库及一套参考答案详解
- 2025年浙江工商职业技术学院公开招聘高层次、高技能人才(教师)35人备考题库含答案详解
- 2025年警考申论真题及答案大全
- 自来水管网知识培训课件
- 汽车购买中介合同范本
- 合格考前一天的课件
- 宿舍心理信息员培训
- 2025北京市实验动物上岗证试题及答案
- 铁路车皮装卸合同范本
- 婚纱照签单合同模板(3篇)
- 安全班队会课件
- 2025年70周岁以上老年人三力测试题库及答案
- 建筑与市政工程无障碍规范详细解读
评论
0/150
提交评论