2026届海南省东方市琼西中学高一数学第一学期期末学业水平测试模拟试题含解析_第1页
2026届海南省东方市琼西中学高一数学第一学期期末学业水平测试模拟试题含解析_第2页
2026届海南省东方市琼西中学高一数学第一学期期末学业水平测试模拟试题含解析_第3页
2026届海南省东方市琼西中学高一数学第一学期期末学业水平测试模拟试题含解析_第4页
2026届海南省东方市琼西中学高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届海南省东方市琼西中学高一数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)2.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.3.若且则的值是.A. B.C. D.4.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.5.已知函数,且,则A. B.0C. D.36.已知方程的两根分别为、,且、,则A. B.或C.或 D.7.点直线中,被圆截得的最长弦所在的直线方程为()A. B.C. D.8.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.9.已知,,,则下列判断正确是()A. B.C. D.10.已知,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.12.函数在______单调递增(填写一个满足条件的区间)13.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.14.已知幂函数为奇函数,则___________.15.已知,则的值为________16.一个几何体的三视图如图所示,则该几何体的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是定义在上的函数,满足.(1)若,求;(2)求证:的周期为4;(3)当时,,求在时的解析式.18.函数的定义域.19.如图,函数(,)的图象与y轴交于点,最小正周期是π(1)求函数的解析式;(2)已知点,点P是函数图象上一点,点是线段PA中点,且,求的值20.已知函数.(1)直接写出的单调区间,并选择一个单调区间根据定义进行证明;(2)解不等式.21.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.2、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.3、C【解析】由题设,又,则,所以,,应选答案C点睛:角变换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.4、C【解析】根据题中条件,得到圆的半径,进而可得圆的方程.【详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.5、D【解析】分别求和,联立方程组,进行求解,即可得到答案.【详解】由题意,函数,且,,则,两式相加得且,即,,则,故选D【点睛】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.6、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.7、A【解析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.【详解】由题意,圆,可得圆心坐标为,要使得直线被圆截得的弦长最长,则直线必过圆心,可得直线的斜率为,所以直线的方程为,即所求直线的方程为.故选:A.8、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.9、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.10、B【解析】根据指数函数的单调性、对数函数的单调性可得答案.【详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:12、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)13、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).14、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:15、【解析】∵,∴,解得答案:16、【解析】该几何体是一个半圆柱,如图,其体积为.考点:几何体的体积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)【解析】(1)先求出,然后再求即可;(2)利用函数周期性的定义,即可证明;(3)根据以及题设条件,先求出,再根据,即可解出在时的解析式【小问1详解】∵,∴.【小问2详解】∵对任意的,满足∴,∴函数是以4为周期的周期函数.【小问3详解】设,则,∵当时,,∴当时,,又∵,∴∴.18、【解析】函数的定义域是,由对数函数的性质能够求出结果【详解】整理得解得函数的定义域为【点睛】本题考查对数函数的定义域,是基础题.解题时要认真审题,注意对数性质的合理运用19、(1);(2),或.【解析】(1)根据余弦型函数的最小正周期公式,结合代入法进行求解即可;(2)根据中点坐标公式,结合余弦函数的性质进行求解即可.【小问1详解】因为函数的最小正周期是π,,所以有,即,因为函数的图象与y轴交于点,所以,因为,所以,即;【小问2详解】设,即,因为点是线段PA的中点,所以有,代入,得,因为,所以,因此有,或,解得:,或.20、(1)在区间,上单调递增,在区间上单调递减,证明见解析(2)【解析】(1)根据增减函数的定义,利用作差法比较与0的大小即可;(2)根据三角函数的性质可得、,利用函数的单调性列出三角不等式,解不等式即可.【小问1详解】在区间,上单调递增,在区间上单调递减.①选区间进行证明.,,且,有,由,所以,由,所以,所以,,所以在区间上单调递增.②选区间进行证明.,,且,有,由,,所以,,所以在区间上单调递减.③选区间进行证明.参考②的证明,在区间上单调递增.【小问2详解】,因为,,在区间上单调递减,所以,(),所以,所求解集为.21、(1)(2)单调递增,证明见解析【解析】(1)若选条件①,根据及指数对数恒等式求出的值,即可求出函数解析式;若选条件②,根据,即可得到,从而求出的值,即可求出函数解析式;若选条件③,直接代入即可得到方程,求出的值,即可求出函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论