版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届内蒙古自治区普通高中高二数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在处的导数为,则()A. B.C. D.2.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.43.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题4.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.15.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.6.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.47.已知点是椭圆上一点,点,则的最小值为A. B.C. D.8.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.9.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.10.的展开式中的系数是()A.1792 B.C.448 D.11.过点且垂直于直线的直线方程为()A. B.C. D.12.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{an}中,,公和为5,则()A.2 B.﹣2C.3 D.﹣3二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的焦点,点分别是抛物线上位于第一、四象限的点,若,则的面积为__________.14.已知函数是上的奇函数,,对,成立,则的解集为_________15.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.16.已知,若共线,m+n=__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数的图象在处的切线方程为,求的值;(2)若函数在上是增函数,求实数的最大值.18.(12分)请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个长方体形状的包装盒,、在上是被切去的等腰直角三角形斜边的两个端点,设(1)求包装盒的容积关于的函数表达式,并求出函数的定义域;(2)当为多少时,包装盒的容积最大?最大容积是多少?19.(12分)如图,直三棱柱中,底面是边长为2的等边三角形,D为棱AC中点.(1)证明:AB1//平面;(2)若面B1BC1与面BC1D的夹角余弦值为,求.20.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C的方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程21.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.22.(10分)已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数的定义即可求出【详解】故选:C2、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.3、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A4、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B5、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D6、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.7、D【解析】设,则,.所以当时,的最小值为.故选D.8、B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养9、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.10、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D11、A【详解】因为所求直线垂直于直线,又直线的斜率为,所以所求直线的斜率,所以直线方程为,即.故选:A【点睛】本题主要考查直线方程的求法,属基础题.12、C【解析】利用已知即可求得,再利用已知可得:,问题得解【详解】解:根据题意,等和数列{an}中,,公和为5,则,即可得,又由an﹣1+an=5,则,则3;故选C【点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、42【解析】由焦半径公式求得参数,得抛物线方程,从而可求得两点纵坐标,再求得直线与轴的交点坐标后可得面积【详解】因为,所以,抛物线的方程为,把代入方程,得(舍去),即.同理,直线方程为,即.所以直线与轴交于点,所以.故答案为:4214、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.15、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:16、【解析】根据空间向量平行的坐标运算求出m,n,进而求得答案.【详解】由于,因为,所以存在,使得,于是,则.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先对函数求导,再根据在处的切线斜率可得到参数的值,然后代入,求出的值,则即可得出;(2)根据函数在上是增函数,可得,即恒成立,再进行参变分离,构造函数,对进行求导分析,找出最小值,即实数的最大值【详解】解:(1)由题意,函数.故,则,由题意,知,即.又,则.,即..(2)由题意,可知,即恒成立,恒成立.设,则.令,解得.令,解得.令,解得x.在上单调递减,在上单调递增,在处取得极小值..,故的最大值为.【点睛】本题主要考查利用某点处的一阶导数分析得出参数的值,参变量分离方法的应用,不等式的计算能力.本题属中档题18、(1),定义域为;(2)当时,包装盒的容积最大是.【解析】(1)设出包装盒的高和底面边长,利用长方体的表面积得到等量关系,再利用长方体的体积公式求出表达式,再利用实际意义得到函数的定义域;(2)求导,利用导函数的符号变化得到函数的极值,即最值.小问1详解】解:设包装盒的高为,底面边长为,则,,所以=其定义域为;【小问2详解】解:由(1)得:,,因为,所以当时,;当时,;所以当时,取得极大值,即当时,包装盒的容积最大是19、(1)证明见解析(2)【解析】(1)连接,使,连接,即可得到,从而得证;(2)设,以为坐标原点建立空间直角坐标系,求出平面的法向量,平面的法向量,利用空间向量的数量积求解面与面的夹角余弦值为,从而得到方程,解得即可【小问1详解】证明:如图,连,使,连,由直三棱柱,所以四边形为矩形,所以为中点,在中,、分别为和中点,,又因平面平面,面,面,平面【小问2详解】解:设,以为坐标原点如图建系,则,,所以、,设平面的法向量则,故可取设平面的法向量,则,故可取,因为面与面的夹角余弦值为,所以,即,解得,20、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.21、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直线与平面所成角的正弦值【小问1详解】证明:设,,,,;【小问2详解】当为的中点时,,,设平面的法向量,则,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为:22、(1)(2)【解析】(1)根据抛物线的定义或者直接列式化简即可求出;(2)方法一:设切线的方程为:,与抛物线方程联立,由即可求出的值,从而得出点的坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云上(贵州)数据开发有限公司第一次社会招聘18人笔试重点题库及答案解析
- 2025湖南高速设计咨询研究院有限公司招聘劳务派遣员工7人参考考试题库及答案解析
- 2026河北沧州市直卫健系统公立医院高层次人才选聘67人备考笔试试题及答案解析
- “梦工场”招商银行泉州分行2026寒假实习生招聘考试核心试题及答案解析
- 武汉长江新区面向社会公开招聘公益性岗位人员25人考试核心试题及答案解析
- 2025广西南宁市良庆区大沙田街道办事处招聘工作人员1人考试核心题库及答案解析
- 2025年福建莆田市城厢区交通运输局非在编工作人员招聘1人考试核心试题及答案解析
- 2025江苏常州市体育局下属事业单位招聘1人备考笔试试题及答案解析
- 2025年绵竹市卫生健康局绵竹市人力资源和社会保障局关于大学生乡村医生专项招聘的备考题库及参考答案详解1套
- 2025四川成都市泡桐树中学教师招聘模拟笔试试题及答案解析
- 核心素养视角下的小学语文教学情境创设研究
- 肩关节脱位的护理
- 电子商务数据分析-数据采集
- 2025年保安员资格考试题目及答案(共100题)
- 大学家属院物业管理办法
- 防火、防爆、防雷、防静电课件
- 海选活动策划方案
- 经济法学-003-国开机考复习资料
- 照明工程施工组织方案
- 电路理论知到智慧树期末考试答案题库2025年同济大学
- 深圳市既有住宅加装电梯工程消防审查验收 工作指引
评论
0/150
提交评论