2026届广东省深圳南头中学数学高二上期末考试模拟试题含解析_第1页
2026届广东省深圳南头中学数学高二上期末考试模拟试题含解析_第2页
2026届广东省深圳南头中学数学高二上期末考试模拟试题含解析_第3页
2026届广东省深圳南头中学数学高二上期末考试模拟试题含解析_第4页
2026届广东省深圳南头中学数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省深圳南头中学数学高二上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于的不等式的解集为()A. B.C.或 D.2.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.3.已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()A B.C. D.4.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥05.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.6.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.7.方程与的曲线在同一坐标系中的示意图应是()A. B.C. D.8.已知对任意实数,有,且时,则时A. B.C. D.9.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱12.设是公比为的等比数列,则“”是“为递增数列”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,,则数列的前6项和为___________.14.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.已知平面直角坐标系中各顶点的坐标分别为,,,则其“欧拉线”的方程为___________.15.已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=4,则|CD|=_____________.16.直线l交椭圆于A,B两点,线段AB的中点为,直线是线段AB的垂直平分线,若,D为垂足,则D点的轨迹方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP18.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.19.(12分)已知椭圆的左、右焦点分别为、,离心率,且过点(1)求椭圆C的方程;(2)已知过的直线l交椭圆C于A、B两点,试探究在平面内是否存在定点Q,使得是一个确定的常数?若存在,求出点Q的坐标;若不存在,说明理由20.(12分)已知在等差数列中,,(1)求数列的通项公式;(2)若的前n项和为,且,,求数列的前n项和21.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和22.(10分)在①;②;③;这三个条件中任选一个,补充在下面的问题中,然后解答补充完整的题.注:若选择多个条件分别解答,则按第一个解答计分.已知,且(只需填序号).(1)求的值;(2)求展开式中的奇数次幂的项的系数之和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出不等式对应方程的根,结合不等式和二次函数的关系,即可得到结果.【详解】不等式对应方程的两根为,因为,故可得,根据二次不等式以及二次函数的关系可得不等式的解集为或.故选:C.【点睛】本题考查含参二次不等式的求解,属基础题.2、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得3、B【解析】根据导数的几何意义,求出切线方程,求出切线和横截距a和纵截距b,面积为【详解】由题意可得,所以,则所求切线方程为令,得;令,得故所求三角形的面积为故选:B4、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.5、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C6、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:7、A【解析】方程即,表示抛物线,方程表示椭圆或双曲线,当和同号时,抛物线开口向左,方程表示焦点在轴的椭圆,无符合条件的选项;当和异号时,抛物线开口向右,方程表示双曲线,本题选择A选项.8、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性9、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D10、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.11、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:12、D【解析】当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列二、填空题:本题共4小题,每小题5分,共20分。13、129【解析】依次写出前6项,即可求得数列的前6项和.【详解】数列中,,则,,,则数列的前6项和为故答案为:12914、【解析】由题意知是直角三角形,即可写出垂心、外心的坐标,进而可得“欧拉线”的方程.【详解】由题设知:是直角三角形,则垂心为直角顶点,外心为斜边的中点,∴“欧拉线”的方程为.故答案为:.15、【解析】先求出圆心和半径,由于半径为2,弦|AB|=4,所以可知直线过圆心,从而得,求出,得到直线方程且倾斜角为135°,进而可求出|CD|【详解】圆,圆心(1,2),半径r=2,∵|AB|=4,∴直线过圆心(1,2),∴,∴,∴直线,倾斜角为135°,∵过A,B分别做l的垂线与x轴交于C,D两点,∴.故答案为:4【点睛】此题考查直线与圆的位置关系,考查两直线的位置关系,考查转化思想和计算能力,属于基础题16、【解析】设直线l的方程为,代入椭圆方程并化简,然后根据M为线段AB的中点结合根与系数的关系得到k,t间的关系,进而写出线段AB的垂直平分线的直线方程,可以判断它过定点E,再考虑直线l的斜率不存在的情况,根据题意可知,点D在以OE为直径的圆上,最后求出点D的轨迹方程.【详解】设直线l的方程为,代入椭圆方程并化简得:,设,则,解得.因为直线是线段AB的垂直平分线,故直线:,即:令,此时,,于是直线过定点当直线l的斜率不存在时,,直线也过定点点D在以OE为直径的圆上,则圆心为,半径,所以点D轨迹方程为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式,结合图形可知,由的范围和的取值即可证明.【小问1详解】由题意可知,抛物线的焦点为,设直线的方程为,则,消去,得,,,所以直线的方程为,由因为三点共线,所以,,同理,,,所以,所以.【小问2详解】因为P、Q是线段MN的三等分点,所以,,,又,,所以,所以,解得或(舍)所以直线AB的斜率为.【小问3详解】由(1)知,,得,所以,,又,,,,当时,,由图可知,,而只要,就有,所以当P、Q不是线段MN的三等分点时,以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP18、(1);(2)证明见解析,.【解析】(1)由题可得,即求;(2)设直线PQ的方程为,联立椭圆方程,利用韦达定理法可得,即得.【小问1详解】由题可设椭圆的方程为,则,∴,∴椭圆的方程为;【小问2详解】当直线PQ的斜率存在时,可设直线PQ的方程为,设,由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直线PQ的方程为过定点;当直线PQ的斜率不存在时,不合题意.故直线PQ过定点,该定点的坐标为.19、(1)(2)存在,定点【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)对直线的斜率是否存在进行分类讨论,设出直线的方程并与椭圆方程联立,结合是常数列方程,从而求得定点的坐标.小问1详解】,,由题可得:.【小问2详解】当直线AB的斜率存在时,设直线AB的方程为,设,,联立方程组,整理得,可得,所以则恒成立,则,解得,,,此时,即存在定点满足条件当直线AB的斜率不存在时,直线AB的方程为x=-2,可得,,设要使得是一个常数,即,显然,也使得成立;综上所述:存在定点满足条件.20、(1);(2).【解析】(1)根据给定条件求出数列的公差即可求解作答.(2)由已知条件求出数列的通项,再利用错位相减法计算作答.【小问1详解】等差数列中,,解得,则公差,所以数列的通项公式为:.【小问2详解】的前n项和为,,,则当时,,于是得,即,而,即,,因此,数列是首项为2,公比为2的等比数列,,由(1)知,,则,因此,,,所以数列的前n项和.21、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论