2026届北京市东城区北京第六十六中学高一数学第一学期期末联考试题含解析_第1页
2026届北京市东城区北京第六十六中学高一数学第一学期期末联考试题含解析_第2页
2026届北京市东城区北京第六十六中学高一数学第一学期期末联考试题含解析_第3页
2026届北京市东城区北京第六十六中学高一数学第一学期期末联考试题含解析_第4页
2026届北京市东城区北京第六十六中学高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市东城区北京第六十六中学高一数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上单调递减,则的取值范围为()A. B.C. D.2.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.3.已知圆:与圆:,则两圆公切线条数为A.1条 B.2条C.3条 D.4条4.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.45.函数,的最小值是()A. B.C. D.6.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间(分)的函数关系表示的图象只可能是()A. B.C. D.7.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.8.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则9.下图是函数的部分图象,则()A. B.C. D.10.函数,的图象形状大致是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线3x+2y+5=0在x轴上的截距为_____.12.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.13.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.14.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______15.函数(且)的图象过定点___________.16.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的函数.(1)若,求在上的值域;(2)存在唯一的实数,使得函数关于点对称,求的取值范围.18.已知函数.(1)当时,若方程式在上有解,求实数的取值范围;(2)若在上恒成立,求实数的值范围.19.已知函数满足(1)求的解析式,并求在上的值域;(2)若对,且,都有成立,求实数k的取值范围20.已知函数为奇函数.(1)求的值;(2)判断并证明在的单调性.21.已知奇函数(a为常数)(1)求a的值;(2)若函数有2个零点,求实数k的取值范围;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】可分析单调递减,即将题目转化为在上单调递增,分别讨论与的情况,进而求解【详解】由题可知单调递减,因为在上单调递减,则在上单调递增,当时,在上单调递减,不符合题意,舍去;当时,,解得,即故选C【点睛】本题考查对数函数的单调性的应用,考查复合函数单调性问题,考查解不等式2、C【解析】根据函数零点的存在性定理可得函数零点所在的区间【详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【点睛】本题主要考查函数的零点的存在性定理的应用,属于基础题3、D【解析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题4、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.6、A【解析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下相同的体积,当时间取分钟时,液面下降的高度与漏斗高度的比较.【详解】由于所给的圆锥形漏斗上口大于下口,当时间取分钟时,液面下降的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:A【点睛】本题主要考查了函数图象的判断,常利用特殊值和函数的性质判断,属于中档题.7、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.8、B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系9、B【解析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.10、D【解析】先根据函数奇偶性排除AC,再结合特殊点的函数值排除B.【详解】定义域,且,所以为奇函数,排除AC;又,排除B选项.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接令,即可求出【详解】解:对直线令,得可得直线在轴上截距是,故答案:【点睛】本题主要考查截距的定义,需要熟练掌握,属于基础题12、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.13、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:214、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图15、【解析】由可得图像所过的定点.【详解】当时,,故的图像过定点.填.【点睛】所谓含参数的函数的图像过定点,是指若是与参数无关的常数,则函数的图像必过.我们也可以根据图像的平移把复杂函数的图像所过的定点归结为常见函数的图像所过的定点(两个定点之间有平移关系).16、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由,得到,结合三角函数的性质,即可求解;(2)因为,可得,结合题意列出不等式,即可求解.【小问1详解】解:当,可得函数,因为,可得,则,所以在上值域为.【小问2详解】解:因为,可得,因为存在唯一的实数,使得曲线关于点对称,所以,解得,所以的取值范围即.18、(1)(2)【解析】(1)将代入函数,根据函数单调性得到,计算函数值域得到答案.(2)根据函数定义域得到,考虑和两种情况,根据函数的单调性得到不等式,解不等式得到答案.【小问1详解】,,,故,即,函数上单调递增,故.【小问2详解】,且,解得.当时,,函数开口向上,对称轴为,故函数在上单调递增,故,解得或,故;当时,,函数开口向上,对称轴为,故在上单调递增,故,解得,,不成立.综上所述:.19、(1),(2)【解析】(1)由条件可得,然后可解出,然后利用对勾函数的知识可得答案;(2)设,条件中的不等式可变形为,即可得在区间(2,4)递增,然后分、、三种情况讨论求解即可.【小问1详解】因为①,所以②,联立①②解得.当时为增函数,时为减函数,因为所以【小问2详解】对,,,都有,不妨设,则由恒成立,也即可得函数在区间(2,4)递增;当,即时,满足题意;当,即时,为两个在上单调递增函数的和,则可得在单调递增,从而满足在(2,4)递增,符合题意;当,即时,,其在递减,在递增,若使在(2,4)递增,则只需;综上可得:20、(1)(2)在上单调递增,在上单调递减,证明过程见解析.(1)【解析】(1)根据奇函数的性质和定义进行求解即可;(2)根据函数的单调性的定义进行判断证明即可.【小问1详解】因为是奇函数,所以,因为,所以是奇函数,因此;【小问2详解】在上单调递增,在上单调递减,证明如下:设是上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论