2026届山东专卷博雅闻道高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2026届山东专卷博雅闻道高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2026届山东专卷博雅闻道高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2026届山东专卷博雅闻道高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2026届山东专卷博雅闻道高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东专卷博雅闻道高一数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是两相异平面,是两相异直线,则下列错误的是A.若,则 B.若,,则C.若,,则 D.若,,,则2.若集合,,则()A. B. C. D.3.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.04.函数,的最小值是()A. B.C. D.5.已知,,且,均为锐角,那么()A. B.或-1C.1 D.6.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数7.过点,且圆心在直线上的圆的方程是()A. B.C. D.8.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限9.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.010.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对二、填空题:本大题共6小题,每小题5分,共30分。11.集合的非空子集是________________12.若函数(,且),在上的最大值比最小值大,则______________.13.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____14.计算:______15.下面有六个命题:①函数是偶函数;②若向量的夹角为,则;③若向量的起点为,终点为,则与轴正方向的夹角的余弦值是;④终边在轴上的角的集合是;⑤把函数的图像向右平移得到的图像;⑥函数在上是减函数.其中,真命题的编号是__________.(写出所有真命题的编号)16.不等式的解集为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.18.回答下列各题(1)求值:(2)解关于的不等式:(其中)19.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值20.已知函数的部分图像如图所示(1)求函数f(x)的解析式,并写出其单调递增区间;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,若,且a、b是方程的两个实数根,试求△ABC的周长及其外接圆的面积21.已知全集U=R,集合,,求:(1)A∩B;(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【详解】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,,则正确;对于D,若,,,则正确.故选:B.2、C【解析】根据交集直接计算即可.【详解】因为,,所以,故选:C3、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A4、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.5、A【解析】首先确定角,接着求,,最后根据展开求值即可.【详解】因为,均为锐角,所以,所以,,所以.故选:A.【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好6、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.7、B【解析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B8、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.9、D【解析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D10、A【解析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【点睛】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合子集的概念,写出集合A的所有非空子集即可.【详解】集合的所有非空子集是.故答案为:.12、或.【解析】分和两种情况,根据指数函数的单调性确定最大值和最小值,根据已知得到关于实数的方程求解即得.【详解】若,则函数在区间上单调递减,所以,,由题意得,又,故;若,则函数在区间上单调递增,所以,,由题意得,又,故.所以的值为或.【点睛】本题考查函数的最值问题,涉及指数函数的性质,和分类讨论思想,属基础题,关键在于根据指数函数的底数的不同情况确定函数的单调性.13、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.14、【解析】根据幂的运算法则,根式的定义计算【详解】故答案为:15、①⑤【解析】对于①函数,则=,所以函数是偶函数;故①对;对于②若向量的夹角为,根据数量积定义可得,此时的向量应该为非零向量;故②错;对于③=,所以与轴正方向的夹角的余弦值是-;故③错;对于④终边在轴上的角的集合是;故④错;对于⑤把函数的图像向右平移得到,故⑤对;对于⑥函数=在上是增函数.故⑥错;故答案为①⑤.16、【解析】根据对数函数的单调性解不等式即可.【详解】由题设,可得:,则,∴不等式解集为.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解】(1)函数f(x)cos(2x)中,它的最小正周期为Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调增区间为[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调减区间为[kπ,kπ],k∈Z;(2)x∈[,]时,2x≤π,所以2x;令2x,解得x,此时f(x)取得最小值为f()()=﹣1;令2x0,解得x,此时f(x)取得最大值为f()1【点睛】本题考查了三角函数的图象与性质的应用问题,熟记单调区间是关键,是基础题18、(1)2;(2).【解析】(1)根据指数幂的运算法则和对数的运算性质计算即可;(2)不等式化为,根据不等式对应方程的两根写出不等式的解集【详解】(1)(2)不等式可化为,不等式对应方程的两根为,,且(其中);所以原不等式的解集为19、(1)||=5;;(2);(3).【解析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐标表示即得;(3)利用向量平行的坐标表示即求.【小问1详解】∵向量=(3,4),=(1,2),∴||=5,;【小问2详解】∵=(3,4),=(1,2),=(-2,-2),=m+n,∴(3,4)=m(1,2)+n(-2,-2)=(m-2n,2m-2n),所以,得;【小问3详解】∵(+)∥(-+k),又-+k=(-1-2k,-2-2k),+=(4,6),∴6(-1-2k)=4(-2-2k),解得,故实数k的值为.20、(1),(2),【解析】(1)根据图像可得及函数的周期,从而求得,然后利用待定系数法即可求得,再根据正弦函数的单调性结合整体思想即可求出函数的增区间;(2)根据可求得角,利用韦达定理可得,再利用余弦定理可求得边,再利用正弦定理可得外接圆的半径,即可得出答案.【小问1详解】解:由函数图象知,又由函数图象知,所以,得,∴,因为图象过点(0,1),所以,所以,又因为,所以,所以函数f(x)的解析式为,令,则,所以单调递增区间为:;【小问2详解】,结合,则,所以,又由题设,得,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论