《实际问题与二次函数(第3课时)》课件_第1页
《实际问题与二次函数(第3课时)》课件_第2页
《实际问题与二次函数(第3课时)》课件_第3页
《实际问题与二次函数(第3课时)》课件_第4页
《实际问题与二次函数(第3课时)》课件_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十二章

二次函数

22.3实际问题与二次函数(第3课时)3.能运用二次函数的图象与性质进行决策.1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题.

2.利用二次函数解决拱桥及运动中的有关问题.生活中抛物线随处可见如图是一个二次函数的图象,现在请你根据给出的坐标系的位置,说出这个二次函数的解析式类型.xyxyxy(1)y=ax2(2)y=ax2+k(3)y=a(x-h)2+k(4)y=ax2+bx+cOOO

如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度是4.9米,水面宽是4米时,拱顶离水面2米.现在想了解水面宽度变化时,拱顶离水面的高度怎样变化.你能想出办法来吗?建立平面直角坐标系解答抛物线形问题知识点建立函数模型.这是什么样的函数呢?

拱桥的纵截面是抛物线,所以应当是个二次函数.你能想出办法来吗?【合作探究】怎样建立直角坐标系比较简单呢?以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图.从图看出,什么形式的二次函数,它的图象是这条抛物线呢?由于顶点坐标系是(0.0),因此这个二次函数的形式为如何确定a是多少?已知水面宽4米时,拱顶离水面高2米,因此点A(2,-2)在抛物线上,由此得出,解得-2-421-2-1Axyo-2=a×22因此,,其中|x|是水面宽度的一半,y是拱顶离水面高度的相反数,这样我们就可以了解到水面宽度变化时,拱顶离水面高度怎样变化.由于拱桥的跨度为4.9米,因此自变量x的取值范围是:现在你能求出水面宽3米时,拱顶离水面高多少米吗?水面宽3m时,

从而因此拱顶离水面高1.125m.建立二次函数模型解决实际问题的基本步骤是什么?实际问题建立二次函数模型利用二次函数的图象和性质求解实际问题的解建立二次函数模型解决实际问题例1

图中是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?建立坐标系解答生活中的抛物线形问题素养考点1l=4m2ml=4m2m解法一:

如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为y=ax2.当拱桥离水面2m时,水面宽4m.即抛物线过点(2,-2),∴这条抛物线所表示的二次函数为y=-0.5x2.∴-2=a×22,∴a=-0.5.当水面下降1m时,水面的纵坐标为y=-3,这时有

l=4m2m解法二:如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.因此可设这条抛物线所表示的二次函数的解析式为:y=ax²+2.此时,抛物线的顶点为(0,2)当拱桥离水面2m时,水面宽4m,即:抛物线过点(2,0),因此这条抛物线所表示的二次函数为:y=-0.5x²+2.当水面下降1m时,水面的纵坐标为y=-1,这时有:

0=a×22+2,a=-0.5.

2ml=4mo解法三:如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.因此可设这条抛物线所表示的二次函数的解析式为y=a(x-2)²+2.∵抛物线过点(0,0),∴0=a×(-2)²+2.∴a=-0.5.因此这条抛物线所表示的二次函数为y=-0.5(x-2)

²+2.此时,抛物线的顶点为(2,2).

2ml=4mo1.理解问题;

回顾“最大利润”和“桥梁建筑”解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流.2.分析问题中的变量和常量,以及它们之间的关系;3.用数学的方式表示出它们之间的关系;4.做数学求解;5.检验结果的合理性.【思考】“二次函数应用”的思路有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.如图所示的直角坐标系中,求出这条抛物线表示的函数的解析式.OACDByx20mh解:设该拱桥形成的抛物线的解析式为y=ax2.∵该抛物线过(10,-4),∴-4=100a,a=-0.04.∴y=-0.04x2.利用二次函数解决运动中抛物线形问题素养考点2例2

如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少米?2.5m4m3.5m3.05m解:如图,建立直角坐标系.则点A的坐标是(1.5,3.05),篮球在最大高度时的位置为B(0,3.5).以点C表示运动员投篮球的出手处.xyO设以y轴为对称轴的抛物线的解析式为y=a(x-0)2+k,即y=ax2+k.而点A,B在这条抛物线上,所以有

2.25a+k=3.05,

k=3.5,

xy

xy

1.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在

s后落地.4基础巩固题2.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为,那么铅球运动过程中最高点离地面的距离为

米.xyO23.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50mB.100mC.160mD.200mC某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.(1)在如图所示的平面直角坐标系中,求抛物线的表达式.能力提升题

解:(1)设抛物线的表达式为y=ax2.∵点B(6,﹣5.6)在抛物线的图象上,∴﹣5.6=36a,∴抛物线的表达式为(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?

(2)设窗户上边所在直线交抛物线于C,D两点,D点坐标为(k,t),已知窗户高1.6m,∴t=﹣5.6﹣(﹣1.6)=﹣4.∴

,解得k=

,即k1≈5.07,k2≈﹣5.07

.∴CD=5.07×2≈10.14(m)设最多可安装n扇窗户,∴1.5n+0.8(n﹣1)+0.8×2≤10.14,解得n≤4.06.则最大的正整数为4.答:最多可安装4扇窗户.解:悬索桥两端主塔塔顶之间的主悬钢索,其形状可近似地看作抛物线,水平桥面与主悬钢索之间用垂直钢索连接.已知两端主塔之间的水平距离为900m,两主塔塔顶距桥面的高度为81.5m,主悬钢索最低点离桥面的高度为0.5m.拓广探索题(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图所示,求这条抛物线对应的函数表达式;yxO-450450解:根据题意,得抛物线的顶点坐标为(0,0.5),对称轴为y轴,设抛物线的函数表达式为y=ax2+0.5.抛物线经过点(450,81.5),代入上式,得

81.5=a•4502+0.5.解得故所求表达式为yxO-450450(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.yxO-450450

当x=450﹣50=400(m)时,得某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得25a+5=0,解得a=﹣0.2,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣0.2(x﹣3)2+5(0<x<8).解:(2)当y=1.8时,有﹣0.2(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,因此为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.解:(3)当x=0时,y=﹣0.2(x﹣3)2+5=3.2.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣0.2x2+bx+3.2,∵该函数图象过点(16,0),∴0=﹣0.2×162+16b+3.2,解得b=3.∴改造后水柱所在抛物线(第一象限部分)的函数表达式为

y=﹣0.2x2+3x+3.2=﹣0.2(x﹣7.5)2+14.45.∴扩建改造后喷水池水柱的最大高度为14.45米.转化回归(二次函数的图象和性质)拱桥问题运动中的抛物线问题(实物中的抛物线形问题)建立恰当的直角坐标系能够将实际距离准确的转化为点的坐标;选择运算简便的方法实际问题数学模型转化的关键1.二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.通常以抛物线的顶点为

,以抛物线的对称轴为

建立平面直角坐标系.

2.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x的一部分,则水喷出的最大高度是(

)A.4m B.3m C.2m D.1m原点

y轴

A构建函数模型解决实际问题【例】

行驶中的汽车在刹车后由于惯性,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不能超过140km/h),对这种汽车进行测试,测得数据如下表:

(1)请建立合适的平面直角坐标系,并在该坐标系内描出这些数据所表示的点,并用平滑曲线连接这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车发生了一起交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?在事故发生时,汽车是超速行驶还是正常行驶?分析:(1)将表中每一组数据作为点的坐标,在平面直角坐标系内描出这些点,画出图象,注意隐含条件x≥0;(2)根据所画出的图象,判断出y是x的什么函数,然后用待定系数法求函数解析式;(3)令y=46.5,求出相应的x的值,再与140

km/h比较.解:(1)建立平面直角坐标系,描点、画图,如图.(2)依据图象,设抛物线的解析式为y=ax2+bx+c,将表中前三组经检验,表中其他各组数据也符合此解析式.所以所求函数解析式为y=0.002x2+0.01x(0≤x≤140).(3)当y=46.5时,0.002x2+0.01x=46.5,解得x1=150,x2=-155(舍去).所以推测刹车时的速度是150

km/h.因为150>140,所以事故发生时汽车是超速行驶.点拨:本题与生活实际紧密相连,体现了数学来源于生活,又服务于生活.题中并没有说明y关于x是哪一种函数,通过提供的数据画出图象后,方可发现符合二次函数的特征.选取三点求出二次函数的解析式后,将其他点代入验证必不可少,只有验证无误后方可认定为二次函数.12341.向上发射一枚炮弹,经xs后的高度为ym,且时间与高度的关系为y=ax2+bx.若此炮弹在第7s与第14s时的高度相等,则在下列哪一个时间的高度是最高的?你的结论是(

)A.第8s B.第10sC.第12s D.第15s答案解析解析关闭答案解析关闭12342.某学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA.O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任意平面上的抛物线如图①,建立平面直角坐标系(如图②),水流喷出的高度y(单位:m)与水面距离x(单位:m)之间的函数解析式是,若不计其他因素,水池的半径至少要(

)m,才能使喷出的水不至于落在池外.答案解析解析关闭答案解析关闭12343.如图,小明的父亲在相距2m的两棵树间拴了一根绳子,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论