版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市2026届高一上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.化简的值是A. B.C. D.2.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面3.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.4.已知,函数在上递减,则的取值范围为()A. B.C. D.5.已知,且,则的值为()A. B.C. D.6.的值等于()A. B.C. D.7.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b8.过点和,圆心在轴上的圆的方程为A. B.C D.9.已知,,,则A. B.C. D.10.设函数,则下列结论错误的是A.函数的值域为 B.函数是奇函数C.是偶函数 D.在定义域上是单调函数二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.12.在平面直角坐标系中,以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,.则的终边与单位圆交点的纵坐标为_____________.13.若正数x,y满足,则的最小值是_________14.已知,且,则的值为______15.已知集合,集合,则________16.一个几何体的三视图及其尺寸(单位:cm),如右图所示,则该几何体的侧面积为cm三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面内给定三个向量(1)求满足的实数m,n的值;(2)若向量满足,且,求向量的坐标18.已知函数.(1)当时,恒成立,求实数的取值范围;(2)是否同时存在实数和正整数,使得函数在上恰有个零点?若存在,请求出所有符合条件的和的值;若不存在,请说明理由.19.已知(1)若为第三象限角,求的值(2)求的值(3)求的值20.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.21.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足,,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当时地铁可达到满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为.(1)求的解析式;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用终边相同角同名函数相同,可转化为求的余弦值即可.【详解】.故选B.【点睛】本题主要考查了三角函数中终边相同的角三角函数值相同及特殊角的三角函数值,属于容易题.2、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.3、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.4、B【解析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【点睛】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题5、B【解析】先通过诱导公式把转化成,再结合平方关系求解.【详解】,又,.故选:B.6、D【解析】利用诱导公式可求得的值.【详解】.故选:D7、C【解析】根据对数函数的单调性和中间数可得正确的选项.【详解】因为,故即,而,故,即,而,故,故即,故,故选:C8、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.9、D【解析】容易看出,,从而可得出a,b,c的大小关系.【详解】,,;.故选D.【点睛】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10、D【解析】根据分段函数的解析式研究函数的单调性,奇偶性,值域,可得结果.【详解】当时,为增函数,所以,当时,为增函数,所以,所以的值域为,所以选项是正确的;又,,所以在定义域上不是单调函数,故选项是错误的;因为当时,,所以,当时,,所以,所以在定义域内恒成立,所以为奇函数,故选项是正确的;因为恒成立,所以函数为偶函数,故选项是正确的.故选:D【点睛】本题考查了分段函数的单调性性,奇偶性和值域,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%12、【解析】根据任意角三角函数的定义可得,,,,再由展开求解即可.【详解】以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,所以,是锐角,可得,因为锐角的终边与单位圆相交于Q点,且纵坐标为,所以,是锐角,可得,所以,所以的终边与单位圆交点的纵坐标为.故答案为:.13、##【解析】由基本不等式结合得出最值.【详解】(当且仅当时,等号成立),即最小值为.故答案为:14、【解析】根据同角的三角函数的关系,利用结合两角和的余弦公式即可求出【详解】,,,,,故答案为.【点睛】本题主要考查同角的三角函数的关系,两角和的余弦公式,属于中档题.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值,角的变换是解题的关键15、【解析】由交集定义计算【详解】由题意故答案为:16、80【解析】图复原的几何体是正四棱锥,斜高是5cm,底面边长是8cm,侧面积为×4×8×5=80(cm2)考点:三视图求面积.点评:本题考查由三视图求几何体的侧面积三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)根据向量的坐标运算求解即可.(2)设向量再根据平行与模长的公式列式求解即可.【详解】(1)由已知条件以及,可得,即解得(2)设向量,则,.∵,∴解得或∴向量的坐标为或.【点睛】本题主要考查了向量坐标的运算以及平行的与模长的公式,属于中等题型.18、(1);(2)存在,当时,;当时,.【解析】(1)利用三角恒等变换思想得出,令,,由题意可知对任意的,可得出,进而可解得实数的取值范围;(2)由题意可知,函数与直线在上恰有个交点,然后对实数的取值进行分类讨论,考查实数在不同取值下两个函数的交点个数,由此可得出结论.【详解】(1),当时,,,则,要使对任意恒成立,令,则,对任意恒成立,只需,解得,实数的取值范围为;(2)假设同时存在实数和正整数满足条件,函数在上恰有个零点,即函数与直线在上恰有个交点.当时,,作出函数在区间上的图象如下图所示:①当或时,函数与直线在上无交点;②当或时,函数与直线在上仅有一个交点,此时要使函数与直线在上有个交点,则;③当或时,函数直线在上有两个交点,此时函数与直线在上有偶数个交点,不可能有个交点,不符合;④当时,函数与直线在上有个交点,此时要使函数与直线在上恰有个交点,则.综上所述,存在实数和正整数满足条件:当时,;当时,.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,利用函数在区间上的零点个数求参数,解本题第(2)问的关键就是要注意到函数与直线的图象在区间上的图象的交点个数,结合周期性求解.19、(1)(2)(3)【解析】(1)化简式子可得,平方后利用同角三角函数的基本关系求解;(2)分子分母同除以,化切后,由两角和的正切公式可得解;(3)根据二倍角的余弦公式求解.【小问1详解】由可得,,平方得,,所以,即,因为为第三象限角,所以.【小问2详解】由可得,即,所以【小问3详解】由(1)知,,所以.20、(1)条件选择见解析,(2)【解析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(2)用正弦定理得表示出,,得到,利用三角函数求出的取值范围.【小问1详解】若选①,则由正弦定理得,因为,所以,所以,所以,又因为,所以,所以,即.若选②,则由正弦定理得,所以,所以,因为,所以,所以,又因为,所以.【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年青岛单招电工电子类技能操作规范经典题含答案含焊接技术
- 2026年浙江单招现代殡葬技术与管理专业适应性测试卷含答案
- 2026年宁波普高生单招职业适应性测试题库含答案机考专用
- 2026年上海单招职业技能判断题选择题含答案机考适配
- 2026年企业采购管理主管经理职位的全攻略与答案
- 2026年机械制造项目专员面试题集
- 2026年医疗行业医院管理岗位面试题集
- 2026年教师招聘面试题及教学方法设计含答案
- 2024-2025学年河南省郑州市管城区、二七区九年级(上)期末数学试卷-20251118121529
- 2026年建筑设计师面试题及作品集制作含答案
- 上海财经大学2026年辅导员及其他非教学科研岗位人员招聘备考题库参考答案详解
- 2025-2026小学部编版语文四年级上册教学工作总结
- 纳税筹划课件教学
- 2025成都农商银行产业金融岗社会招聘考试笔试参考题库及答案解析
- DB32∕T 2914-2025 危险场所电气防爆安全检查规范
- 2026成方金融科技有限公司校园招聘34人考试笔试参考题库及答案解析
- 基于BIM技术的大学宿舍施工组织设计及智慧工地管理
- 乡镇综治维稳课件
- 中国融通集团2025届秋季校园招聘笔试历年参考题库附带答案详解
- 企业网络安全体系建设方案
- GB/T 24689.2-2017植物保护机械杀虫灯
评论
0/150
提交评论