版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原市扶余第一中学2026届数学高一上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则()A. B.C. D.2.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数3.下列说法不正确的是()A.方向相同大小相等的两个向量相等B.单位向量模长为一个单位C.共线向量又叫平行向量D.若则ABCD四点共线4.下列函数,其中既是偶函数又在区间上单调递减的函数为A. B.C. D.5.若,则有()A.最小值为3 B.最大值为3C.最小值为 D.最大值为6.已知函数则其在区间上的大致图象是()A. B.C. D.7.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.8.设方程的解为,则所在的区间是A. B.C. D.9.一个空间几何体的三视图如图所示,则该几何体的表面积为A.7B.9C.11D.1310.已知角终边经过点,若,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为12.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.13.已知直线,互相平行,则__________.14.幂函数的图象过点,则___________.15.若,,且,则的最小值为__________16.已知上的奇函数是增函数,若,则的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.18.某乡镇为了进行美丽乡村建设,规划在长为10千米的河流的一侧建一条观光带,观光带的前一部分为曲线段,设曲线段为函数,(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段,如图所示.(1)求曲线段对应的函数的解析式;(2)若计划在河流和观光带之间新建一个如图所示的矩形绿化带,绿化带由线段构成,其中点在线段上.当长为多少时,绿化带的总长度最长?19.(1)已知,则;(2)已知角的终边上有一点的坐标是,其中,求20.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式21.如图,在平面四边形ABCD中,AB=2,CD=23,∠DAB=∠CDB=θ,0<θ<π2,∠ADB=π(1)求四边形ABCD面积的最大值;(2)求DA+DB+DE的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先计算得到,,再利用展开得到答案.详解】,,;,;故选:【点睛】本题考查了三角函数值的计算,变换是解题的关键.2、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.3、D【解析】利用平面向量相等概念判断,利用共线向量和单位向量的定义判断.【详解】根据向量相等的概念判断正确;根据单位向量的概念判断正确;根据共线向量的概念判断正确;平行四边形中,因此四点不共线,故错误.故选:.【点睛】本题考查了命题真假性的判断及平面向量的基础知识,注意反例的积累,属于基础题.4、A【解析】分别考查函数的奇偶性和函数的单调性即可求得最终结果.【详解】逐一考查所给的函数的性质:A.,函数为偶函数,在区间上单调递减;B.,函数为非奇非偶函数,在区间上单调递增;C.,函数为奇函数,在区间上单调递减;D.,函数为偶函数,在区间上单调递增;据此可得满足题意的函数只有A选项.本题选择A选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.5、A【解析】利用基本不等式即得,【详解】∵,∴,∴,当且仅当即时取等号,∴有最小值为3.故选:A.6、D【解析】为奇函数,去掉A,B;当时,所以选D.点睛:(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系7、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.8、B【解析】构造函数,则函数的零点所在的区间即所在的区间,由于连续,且:,,由函数零点存在定理可得:所在的区间是.本题选择B选项.9、B【解析】该几何体是一个圆上面挖掉一个半球,S=2π×3+π×12+=9π.10、C【解析】根据三角函数的定义,列出方程,即可求解.【详解】由题意,角终边经过点,可得,又由,根据三角函数的定义,可得且,解得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.12、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.13、【解析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.14、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:15、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.16、【解析】先通过函数为奇函数将原式变形,进而根据函数为增函数求得答案.【详解】因为函数为奇函数,所以,而函数在R上为增函数,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,利用列举法能求出恰好有1人在35岁以上(含35岁)的概率.【详解】(1)根据分层抽样按比例抽取,得:,解得.(2)35岁以下:(人),35岁以上(含35岁):(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为,,共10个样本点.设:恰好有1人在35岁以上(含35岁),有4个样本点,故.【点睛】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.18、(1).(2)当OM长为1千米时,绿化带的总长度最长.【解析】(1)由题意首先求得a,b,c的值,然后分段确定函数的解析式即可;(2)设,由题意得到关于t的函数,结合二次函数的性质确定当长为多少时,绿化带的总长度最长即可.【详解】(1)因为曲线段OAB过点O,且最高点为,,解得.所以,当时,,因为后一部分为线段BC,,当时,,综上,.(2)设,则,由,得,所以点,所以,绿化带的总长度:.所以当时.【点睛】本题考查分段函数求函数值,要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念.19、(1);(2)当时,;当时,【解析】(1)分子分母同时除以,然后代入计算即可;(2)利用三角函数的定义求出和,再分和讨论计算即可.【详解】(1)分子分母同时除以得原式=.(2)由三角函数的定义可知,,当时,,,所以;当时,,,所以所以当时,原式;当时,原式20、(1)(2)答案不唯一,具体见解析【解析】(1)利用参变量分离法可求得实数的取值范围;(2)分、、、四种情况讨论,结合二次不等式的解法可求得原不等式的解集.【小问1详解】由题意得,当时,在上恒成立,即当时,在上恒成立,不等式可变为,令,,则,故,解得【小问2详解】当时,解不等式,即当时,解不等式,不等式可变为,若时,不等式可变为,可得;若时,不等式可变为,当时,,可得或;当时,,即,可得且;当时,,可得或综上:当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是21、(1)2+(2)2,1+2【解析】(1)依题意可得DA=2cosθ,DB=2sinθ,再由∠CDB=θ,得到BE=2sin2θ(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行业华创金融红利资产月报:10月红利板块交易占比上升险资举牌热情延续
- 保护牙齿的课程设计
- 2025广西桂林市生态资源开发集团有限公司公开招聘2人备考考试试题及答案解析
- 奥德赛岁月之旅课程设计
- 2025年云计算十年技术演进与数据中心发展报告
- 2026年甘肃天水市事业单位引进高层次人才(219人)考试重点题库及答案解析
- 吉安市文化传媒集团有限责任公司2025年公开招聘劳务派遣工作人员考试重点试题及答案解析
- 2025年乡村旅游公路游客承载十年预测行业报告
- 2025广西北海市市场监管投诉处置办公室招录公益性岗位人员2人考试核心题库及答案解析
- 2025四川绵阳市盐亭发展投资集团有限公司招聘职能部门及所属子公司人员7人考试重点试题及答案解析
- 探槽地质编录工作方法
- 光伏工程资料表格模板
- GB/T 41123.2-2021无损检测工业射线计算机层析成像检测第2部分:操作和解释
- GB/T 17636-1998土工布及其有关产品抗磨损性能的测定砂布/滑块法
- GB/T 17612-1998封闭管道中液体流量的测量称重法
- GB/T 10609.2-1989技术制图明细栏
- 配电系统标识
- 新课标部编版七年级上册语文第六单元第二十二课《寓言四则》课件
- 基础医学概论复习讲义
- 医院检验科冰箱温度登记表
- DL∕T 617-2019 气体绝缘金属封闭开关设备技术条件
评论
0/150
提交评论