版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杭州高级中学2026届高一上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与圆关于直线对称的圆的方程为()A. B.C. D.2.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.3.设四边形为平行四边形,,若点满足,,则A. B.C. D.4.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.5.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.6.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.已知,则()A. B.C. D.8.若,则()A. B.C.或1 D.或9.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)10.每天,随着清晨第一缕阳光升起,北京天安门广场都会举行庄严肃穆的升旗仪式,每天升国旗的时间随着日出时间的改变而改变,下表给出了2020年1月至12月,每个月第一天北京天安门广场举行升旗礼的时间:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若据此以月份(x)为横轴、时间(y)为纵轴,画出散点图,并用曲线去拟合这些数据,则适合模拟的函数模型是()A. B.且a≠1)C. D.且a≠1)二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则a、b的大小关系是______.(用“<”连接)12.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围13.无论取何值,直线必过定点__________14.已知半径为3的扇形面积为,则这个扇形的圆心角为________15.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.16.若函数是定义在上的奇函数,且满足,当时,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.18.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围19.已知函数,其中m为常数,且(1)求m的值;(2)用定义法证明在R上是减函数20.已知全集,集合(1)若,求(2).若p是q的充分不必要条件,求a的取值范围21.如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.(1)求证:平面MAP⊥平面SAC.(2)求二面角M—AC—B的平面角的正切值;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【点睛】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体3、D【解析】令,则,,故选D4、B【解析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.5、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.6、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C7、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D8、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.9、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题10、C【解析】画出散点图,根据图形即可判断.【详解】画出散点图如下,则根据散点图可知,可用正弦型曲线拟合这些数据,故适合.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】容易看出,<0,>0,从而可得出a,b的大小关系【详解】,>0,,∴a<b故答案为a<b【点睛】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.12、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是13、【解析】直线(λ+2)x﹣(λ﹣1)y+6λ+3=0,即(2x+y+3)+λ(x﹣y+6)=0,由求得x=﹣3,y=3,可得直线经过定点(﹣3,3)故答案为(﹣3,3)14、【解析】由扇形的面积公式直接求解.【详解】由扇形面积公式,可得圆心角,故答案为:.【点睛】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.15、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.16、##【解析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据函数的单调性求出a的范围即可;(Ⅲ)根据二次函数的性质通过讨论m的范围,结合函数的最小值,求出m的值即可【详解】(I)函数的图象过点(II)由(I)知恒成立即恒成立令,则命题等价于而单调递增即(III),令当时,对称轴①当,即时,不符舍去.②当时,即时.符合题意.综上所述:【点睛】本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想以及分类讨论思想,换元思想,是一道中档题18、(1);(2)或.【解析】(1)解一元二次不等式化简集合B,把代入,利用补集、交集的定义直接计算作答.(2)由给定条件可得,再借助集合的包含关系列式计算作答.【小问1详解】当时,,解不等式得:或,则或,有,所以.【小问2详解】由(1)知,或,因“”是“”的充分条件,则,显然,,因此,或,解得或,所以实数a取值范围是或.19、(1)1;(2)证明见解析.【解析】(1)将代入函数解析式直接计算即可;(2)利用定义法直接证明函数的单调性即可.【小问1详解】由题意得,,解得;【小问2详解】由(1)知,,所以R,R,且,则,因为,所以,所以,故,即,所以函数在R上是减函数.20、(1)或;(2)【解析】(1)根据集合的补集和并集的定义进行求解即可;(2)由充分不必要条件确定集合之间的关系,根据真子集的性质进行求解即可.【小问1详解】因为,所以,因此或,而,所以或;【小问2详解】因为p是q的充分不必要条件,所以,因此有:,故a的取值范围为.21、(1)证明见解析(2)【解析】(1)由已知可证BC⊥平面SAC,又PM∥BC,则PM⊥面SAC,从而可证平面MAP⊥平面SAC;(2)由AC⊥平面SBC,可得∠MCB为二面角M—AC-B的平面角,过点M作MN⊥CB于N点,连接AN,则∠AMN=60°,由勾股定理可得,在中,可得,从而在中,即可求解二面角M—AC—B的平面角的正切值.【小问1详解】证明:∵SC⊥平面ABC,∴SC⊥BC,又∵∠ACB=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025国家公务员国家税务总局崇左市江州区税务局面试试题及答案解析
- 2025年中国社会科学院考古研究所石窟寺考古研究室考古技师招聘备考题库完整参考答案详解
- 2024年唐山市事业单位招聘考试真题
- 2025年大理州强制隔离戒毒所公开招聘辅警5人备考题库及完整答案详解一套
- 青岛海明城市发展有限公司及全资子公司招聘考试真题2024
- 2025 九年级语文下册戏剧舞台设计意图课件
- 2025年广西百色市乐业县专业森林消防救援队伍招聘13人笔试重点题库及答案解析
- 河口县公安局公开招聘辅警(16人)备考考试试题及答案解析
- 2025-2026 学年高一 语文 期末冲刺卷 试卷及答案
- 国家知识产权局专利局专利审查协作北京中心福建分中心2026年度专利审查员公开招聘备考题库带答案详解
- 【MOOC】中药药理学-学做自己的调理师-暨南大学 中国大学慕课MOOC答案
- 城镇污泥标准检验方法CJT221-2023 知识培训
- 混合型高脂血症基层诊疗中国专家共识2024解读
- DL-T5842-2021110kV~750kV架空输电线路铁塔基础施工工艺导则
- 庙坝镇规划方案公示
- 叉车考试题库
- 口腔正畸学课件
- 一次调频综合指标计算及考核度量方法
- 《杀死一只知更鸟》读书分享PPT
- 成功的三大要素
- GB/T 41932-2022塑料断裂韧性(GIC和KIC)的测定线弹性断裂力学(LEFM)法
评论
0/150
提交评论