2026届四川省广安市广安区广安中学高一上数学期末监测模拟试题含解析_第1页
2026届四川省广安市广安区广安中学高一上数学期末监测模拟试题含解析_第2页
2026届四川省广安市广安区广安中学高一上数学期末监测模拟试题含解析_第3页
2026届四川省广安市广安区广安中学高一上数学期末监测模拟试题含解析_第4页
2026届四川省广安市广安区广安中学高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省广安市广安区广安中学高一上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某同学用“五点法”画函数fxωx+φ0ππ3π2xπ5πA05-50根据表格中的数据,函数fxA.fx=5C.fx=52.圆与圆有()条公切线A.0 B.2C.3 D.43.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°5.若正数x,y满足,则的最小值为()A.4 B.C.8 D.96.若,则()A. B.C.或1 D.或7.函数的部分图像为()A. B.C. D.8.已知函数,则下列判断正确的是A.函数是奇函数,且在R上是增函数B.函数偶函数,且在R上是增函数C.函数是奇函数,且在R上是减函数D.函数是偶函数,且在R上是减函数9.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②10.在同一直角坐标系中,函数和(且)的图像可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间为________________.12.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.14.函数的图象为,以下结论中正确的是______(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③由的图象向右平移个单位长度可以得到图象;④函数在区间内是增函数.15.已知α∈.若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则=______.16.若的最小正周期为,则的最小正周期为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围18.已知圆:关于直线:对称的图形为圆.(1)求圆的方程;(2)直线:,与圆交于,两点,若(为坐标原点)的面积为,求直线的方程.19.已知函数(1)当时,函数恒有意义,求实数的取值范围;(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由20.在中,,记,且为正实数),(1)求证:;(2)将与的数量积表示为关于的函数;(3)求函数的最小值及此时角的大小21.已知定义域为R的函数是奇函数.(1)求a的值;(2)求不等式的解集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数最值,可求得A值,根据周期公式,可求得ω值,代入特殊点,可求得φ值,即可得答案.【详解】由题意得最大值为5,最小值为-5,所以A=5,T2=5π6-又2×π3+φ=所以fx的解析式可以是故选:A2、B【解析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B3、C【解析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.4、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.5、C【解析】由已知可得,然后利用基本不等式可求得结果【详解】解:因为正数x,y满足,所以,当且仅当,即时取等号,所以的最小值为8,故选:C【点睛】此题考查基本不等式应用,利用了“1”的代换,属于基础题6、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.7、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D8、A【解析】求出的定义域,判断的奇偶性和单调性,进而可得解.【详解】的定义域为R,且;∴是奇函数;又和都是R上的增函数;是R上的增函数故选A【点睛】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题9、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D10、B【解析】利用函数的奇偶性及对数函数的图象的性质可得.【详解】由函数,可知函数为偶函数,函数图象关于轴对称,可排除选项AC,又的图象过点,可排除选项D.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果.【详解】函数由,复合而成,单调递减令,解得或,即函数的定义域为,由二次函数的性质知在是减函数,在上是增函数,由复合函数的单调性判断知函数的单调递增区间,故答案为.【点睛】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!12、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.13、【解析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:14、①②④【解析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象.【详解】由题意,,令,,当时,即函数的一条对称轴,所以①正确;令,,当时,,所以是函数的一个对称中心,所以②正确;当,,在区间内是增函数,所以④正确;的图象向右平移个单位长度得到,与函数不相等,所以③错误.故答案为:①②④.15、-1【解析】根据幂函数,当为奇数时,函数为奇函数,时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f(x)=xα为奇函数,∴可取-1,1,3,又f(x)=xα在(0,+∞)上递减,∴α<0,故=-1.故答案为:-1.16、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【详解】的最小正周期为,即,则所以的最小正周期为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.18、(1),(2)【解析】(1)设圆圆心为,则由题意得,求出的值,从而可得所求圆的方程;(2)设圆心到直线:的距离为,原点到直线:的距离为,则有,,再由的面积为,列方程可求出的值,进而可得直线方程【详解】解:(1)设圆的圆心为,由题意可得,则的中点坐标为,因为圆:关于直线:对称的图形为圆,所以,解得,因为圆和圆的半径相同,即,所以圆的方程为,(2)设圆心到直线:的距离为,原点到直线:的距离为,则,,所以所以,解得,因为,所以,所以直线的方程为【点睛】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题19、(1);(2)不存在,理由见解析【解析】(1)结合题意得到关于实数的不等式组,求解不等式,即可求解,得到答案;(2)由题意结合对数函数的图象与性质,即可求得是否存在满足题意的实数的值,得到答案【详解】(1)由题设,对一切恒成立,且,∵,∴在上减函数,从而,∴,∴的取值范围为;(2)假设存在这样的实数,由题设知,即,∴,此时,当时,,此时没有意义,故这样的实数不存在【点睛】关键点点睛:本题主要考查了对数函数的图象与性质的应用,以及复数函数的单调性的判定及应用,其中解答中熟记对数函数的图象与性质,合理求解函数的最值,列出方程求解是解答的关键20、(1)证明见解析;(2);(3)2,.【解析】(1)由,得到,根据,即可求解;(2)由,整理得,即可求得表达式;(3)由(2)知,结合基本不等式,求得的最小值,再利用向量的夹角公式,即可求解.【详解】(1)在中,,可得,所以,所以.(2)由,可得,即,整理得,所以(3)由(2)知,因为为正实数,则,当且仅当时,即时,等号成立,所以的最小值为2,即,此时,因为,可得,又因为,此时为等边三角形,所以【点睛】求平面向量的模的2种方法:1、利用及,把向量模的运算转化为数量积的运算;2、利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论